Faust - Python Stream Processing

# Python Streams ٩(◕‿◕)۶
# Forever scalable event processing & in-memory durable K/V store;
# w/ asyncio & static typing.
import faust

Faust is a stream processing library, porting the ideas from Kafka Streams to Python.

It is used at Robinhood to build high performance distributed systems and real-time data pipelines that process billions of events every day.

Faust provides both stream processing and event processing, sharing similarity with tools such as Kafka Streams, Apache Spark/Storm/Samza/Flink,

It does not use a DSL, it’s just Python! This means you can use all your favorite Python libraries when stream processing: NumPy, PyTorch, Pandas, NLTK, Django, Flask, SQLAlchemy, ++

Faust requires Python 3.6 or later for the new async/await syntax, and variable type annotations.

Here’s an example processing a stream of incoming orders:

app = faust.App('myapp', broker='kafka://localhost')

# Models describe how messages are serialized:
# {"account_id": "3fae-...", amount": 3}
class Order(faust.Record):
    account_id: str
    amount: int

@app.agent(value_type=Order)
async def order(orders):
    async for order in orders:
        # process infinite stream of orders.
        print(f'Order for {order.account_id}: {order.amount}')

The Agent decorator defines a “stream processor” that essentially consumes from a Kafka topic and does something for every event it receives.

The agent is an async def function, so can also perform other operations asynchronously, such as web requests.

This system can persist state, acting like a database. Tables are named distributed key/value stores you can use as regular Python dictionaries.

Tables are stored locally on each machine using a super fast embedded database written in C++, called RocksDB.

Tables can also store aggregate counts that are optionally “windowed” so you can keep track of “number of clicks from the last day,” or “number of clicks in the last hour.” for example. Like Kafka Streams, we support tumbling, hopping and sliding windows of time, and old windows can be expired to stop data from filling up.

For reliability we use a Kafka topic as “write-ahead-log”. Whenever a key is changed we publish to the changelog. Standby nodes consume from this changelog to keep an exact replica of the data and enables instant recovery should any of the nodes fail.

To the user a table is just a dictionary, but data is persisted between restarts and replicated across nodes so on failover other nodes can take over automatically.

You can count page views by URL:

# data sent to 'clicks' topic sharded by URL key.
# e.g. key="http://example.com" value="1"
click_topic = app.topic('clicks', key_type=str, value_type=int)

# default value for missing URL will be 0 with `default=int`
counts = app.Table('click_counts', default=int)

@app.agent(click_topic)
async def count_click(clicks):
    async for url, count in clicks.items():
        counts[url] += count

The data sent to the Kafka topic is partitioned, which means the clicks will be sharded by URL in such a way that every count for the same URL will be delivered to the same Faust worker instance.

Faust supports any type of stream data: bytes, Unicode and serialized structures, but also comes with “Models” that use modern Python syntax to describe how keys and values in streams are serialized:

# Order is a json serialized dictionary,
# having these fields:

class Order(faust.Record):
    account_id: str
    product_id: str
    price: float
    quantity: float = 1.0

orders_topic = app.topic('orders', key_type=str, value_type=Order)

@app.agent(orders_topic)
async def process_order(orders):
    async for order in orders:
        # process each order using regular Python
        total_price = order.price * order.quantity
        await send_order_received_email(order.account_id, order)

Faust is statically typed, using the mypy type checker, so you can take advantage of static types when writing applications.

The Faust source code is small, well organized, and serves as a good resource for learning the implementation of Kafka Streams.

Learn more about Faust in the Introducing Faust introduction page

to read more about Faust, system requirements, installation instructions, community resources, and more.

or go directly to the Quick Start tutorial

to see Faust in action by programming a streaming application.

then explore the User Guide

for in-depth information organized by topic.


Contents

Introducing Faust

Version

1.7.4

Web

http://faust.readthedocs.io/

Download

http://pypi.org/project/faust

Source

http://github.com/robinhood/faust

Keywords

distributed, stream, async, processing, data, queue

Table of Contents

What can it do?

Agents

Process infinite streams in a straightforward manner using asynchronous generators. The concept of “agents” comes from the actor model, and means the stream processor can execute concurrently on many CPU cores, and on hundreds of machines at the same time.

Use regular Python syntax to process streams and reuse your favorite libraries:

@app.agent()
async def process(stream):
    async for value in stream:
        process(value)
Tables

Tables are sharded dictionaries that enable stream processors to be stateful with persistent and durable data.

Streams are partitioned to keep relevant data close, and can be easily repartitioned to achieve the topology you need.

In this example we repartition an order stream by account id, to count orders in a distributed table:

import faust

# this model describes how message values are serialized
# in the Kafka "orders" topic.
class Order(faust.Record, serializer='json'):
    account_id: str
    product_id: str
    amount: int
    price: float

app = faust.App('hello-app', broker='kafka://localhost')
orders_kafka_topic = app.topic('orders', value_type=Order)

# our table is sharded amongst worker instances, and replicated
# with standby copies to take over if one of the nodes fail.
order_count_by_account = app.Table('order_count', default=int)

@app.agent(orders_kafka_topic)
async def process(orders: faust.Stream[Order]) -> None:
    async for order in orders.group_by(Order.account_id):
        order_count_by_account[order.account_id] += 1

If we start multiple instances of this Faust application on many machines, any order with the same account id will be received by the same stream processing agent, so the count updates correctly in the table.

Sharding/partitioning is an essential part of stateful stream processing applications, so take this into account when designing your system, but note that streams can also be processed in round-robin order so you can use Faust for event processing and as a task queue also.

Asynchronous with asyncio

Faust takes full advantage of asyncio and the new async/await keywords in Python 3.6+ to run multiple stream processors in the same process, along with web servers and other network services.

Thanks to Faust and asyncio you can now embed your stream processing topology into your existing asyncio/gevent/ eventlet/Twisted/Tornado applications.

Faust is…
Simple

Faust is extremely easy to use. To get started using other stream processing solutions you have complicated hello-world projects, and infrastructure requirements. Faust only requires Kafka, the rest is just Python, so If you know Python you can already use Faust to do stream processing, and it can integrate with just about anything.

Here’s one of the easier applications you can make:

import faust

class Greeting(faust.Record):
    from_name: str
    to_name: str

app = faust.App('hello-app', broker='kafka://localhost')
topic = app.topic('hello-topic', value_type=Greeting)

@app.agent(topic)
async def hello(greetings):
    async for greeting in greetings:
        print(f'Hello from {greeting.from_name} to {greeting.to_name}')

@app.timer(interval=1.0)
async def example_sender(app):
    await hello.send(
        value=Greeting(from_name='Faust', to_name='you'),
    )

if __name__ == '__main__':
    app.main()

You’re probably a bit intimidated by the async and await keywords, but you don’t have to know how asyncio works to use Faust: just mimic the examples, and you’ll be fine.

The example application starts two tasks: one is processing a stream, the other is a background thread sending events to that stream. In a real-life application, your system will publish events to Kafka topics that your processors can consume from, and the background thread is only needed to feed data into our example.

Highly Available

Faust is highly available and can survive network problems and server crashes. In the case of node failure, it can automatically recover, and tables have standby nodes that will take over.

Distributed

Start more instances of your application as needed.

Fast

A single-core Faust worker instance can already process tens of thousands of events every second, and we are reasonably confident that throughput will increase once we can support a more optimized Kafka client.

Flexible

Faust is just Python, and a stream is an infinite asynchronous iterator. If you know how to use Python, you already know how to use Faust, and it works with your favorite Python libraries like Django, Flask, SQLAlchemy, NTLK, NumPy, SciPy, TensorFlow, etc.


Faust is used for…

  • Event Processing

  • Distributed Joins & Aggregations

  • Machine Learning

  • Asynchronous Tasks

  • Distributed Computing

  • Data Denormalization

  • Intrusion Detection

  • Realtime Web & Web Sockets.

  • and much more…

How do I use it?

Step 1: Add events to your system

  • Was an account created? Publish to Kafka.

  • Did a user change their password? Publish to Kafka.

  • Did someone make an order, create a comment, tag something, …? Publish it all to Kafka!

Step 2: Use Faust to process those events

Some ideas based on the events mentioned above:

  • Send email when an order is dispatches.

  • Find orders created with no corresponding dispatch event for more than three consecutive days.

  • Find accounts that changed their password from a suspicious IP address.

  • Starting to get the idea?

What do I need?

Faust requires Python 3.6 or later, and a running Kafka broker.

There’s no plan to support earlier Python versions. Please get in touch if this is something you want to work on.

Extensions

Name

Version

Bundle

rocksdb

5.0

pip install faust[rocksdb]

redis

aredis 1.1

pip install faust[redis]

datadog

0.20.0

pip install faust[datadog]

statsd

3.2.1

pip install faust[statsd]

uvloop

0.8.1

pip install faust[uvloop]

gevent

1.4.0

pip install faust[gevent]

eventlet

1.16.0

pip install faust[eventlet]

Optimizations

These can be all installed using pip install faust[fast]:

Name

Version

Bundle

aiodns

1.1.0

pip install faust[aiodns]

cchardet

1.1.0

pip install faust[cchardet]

ciso8601

2.1.0

pip install faust[ciso8601]

cython

0.9.26

pip install faust[cython]

orjson

2.0.0

pip install faust[orjson]

setproctitle

1.1.0

pip install faust[setproctitle]

Debugging extras

These can be all installed using pip install faust[debug]:

Name

Version

Bundle

aiomonitor

0.3

pip install faust[aiomonitor]

setproctitle

1.1.0

pip install faust[setproctitle]

Note

See bundles in the Installation instructions section of this document for a list of supported setuptools extensions.

To specify multiple extensions at the same time

separate extensions with the comma:

$ pip install faust[uvloop,fast,rocksdb,datadog,redis]

RocksDB On MacOS Sierra

To install python-rocksdb on MacOS Sierra you need to specify some additional compiler flags:

$ CFLAGS='-std=c++11 -stdlib=libc++ -mmacosx-version-min=10.10' \
    pip install -U --no-cache python-rocksdb

Design considerations

Modern Python

Faust uses current Python 3 features such as async/await and type annotations. It’s statically typed and verified by the mypy type checker. You can take advantage of type annotations when writing Faust applications, but this is not mandatory.

Library

Faust is designed to be used as a library, and embeds into any existing Python program, while also including helpers that make it easy to deploy applications without boilerplate.

Supervised

The Faust worker is built up by many different services that start and stop in a certain order. These services can be managed by supervisors, but if encountering an irrecoverable error such as not recovering from a lost Kafka connections, Faust is designed to crash.

For this reason Faust is designed to run inside a process supervisor tool such as supervisord, Circus, or one provided by your Operating System.

Extensible

Faust abstracts away storages, serializers, and even message transports, to make it easy for developers to extend Faust with new capabilities, and integrate into your existing systems.

Lean

The source code is short and readable and serves as a good starting point for anyone who wants to learn how Kafka stream processing systems work.

Getting Help

Mailing list

For discussions about the usage, development, and future of Faust, please join the faust-users mailing list.

Resources

Bug tracker

If you have any suggestions, bug reports, or annoyances please report them to our issue tracker at https://github.com/robinhood/faust/issues/

License

This software is licensed under the New BSD License. See the LICENSE file in the top distribution directory for the full license text.

Playbooks

Release

1.7

Date

Jul 23, 2019

Quick Start

Hello World
Application

The first thing you need to get up and running with Faust is to define an application.

The application (or app for short) configures your project and implements common functionality. We also define a topic description, and an agent to process messages in that topic.

Lets create the file hello_world.py:

import faust

app = faust.App(
    'hello-world',
    broker='kafka://localhost:9092',
    value_serializer='raw',
)

greetings_topic = app.topic('greetings')

@app.agent(greetings_topic)
async def greet(greetings):
    async for greeting in greetings:
        print(greeting)

In this tutorial, we keep everything in a single module, but for larger projects, you can create a dedicated package with a submodule layout.

The first argument passed to the app is the id of the application, needed for internal bookkeeping and to distribute work among worker instances.

By default Faust will use JSON serialization, so we specify value_serializer here as raw to avoid deserializing incoming greetings. For real applications you should define models (see Models, Serialization, and Codecs).

Here you defined a Kafka topic greetings and then iterated over the messages in the topic and printed each one of them.

Note

The application id setting (i.e. 'hello-world' in the example above), should be unique per Faust app in your Kafka cluster.

Starting Kafka

Before running your app, you need to start Zookeeper and Kafka.

Start Zookeeper first:

$ $KAFKA_HOME/bin/zookeeper-server-start $KAFKA_HOME/etc/kafka/zookeeper.properties

Then start Kafka:

$ $KAFKA_HOME/bin/kafka-server-start $KAFKA_HOME/etc/kafka/server.properties
Running the Faust worker

Now that you have created a simple Faust application and have Kafka and Zookeeper running, you need to run a worker instance for the application.

Start a worker:

$ faust -A hello_world worker -l info

Multiple instances of a Faust worker can be started independently to distribute stream processing across machines and CPU cores.

In production, you’ll want to run the worker in the background as a daemon. Use the tools provided by your platform, or use something like supervisord.

Use --help to get a complete listing of available command-line options:

$ faust worker --help
Seeing things in Action

At this point, you have an application running, but not much is happening. You need to feed data into the Kafka topic to see Faust print the greetings as it processes the stream, and right now that topic is probably empty.

Let’s use the faust send command to push some messages into the greetings topic:

$ faust -A hello_world send @greet "Hello Faust"

The above command sends a message to the greet agent by using the @ prefix. If you don’t use the prefix, it will be treated as the name of a topic:

$ faust -A hello_world send greetings "Hello Kafka topic"

After sending the messages, you can see your worker start processing them and print the greetings to the console.

Where to go from here…

Now that you have seen a simple Faust application in action, you should dive into the other sections of the User Guide or jump right into the Playbooks for tutorials and solutions to common patterns.

Tutorial: Count page views

In the Quick Start tutorial, we went over a simple example reading through a stream of greetings and printing them to the console. In this playbook we do something more meaningful with an incoming stream, we’ll maintain real-time counts of page views from a stream of page views.

Application

As we did in the Quick Start tutorial, we first define our application. Let’s create the module page_views.py:

import faust

app = faust.App(
    'page_views',
    broker='kafka://localhost:9092',
    topic_partitions=4,
)

The topic_partitions setting defines the maximum number of workers we can distribute the workload to (also sometimes referred as the “sharding factor”). In this example, we set this to 4, but in a production app, we ideally use a higher number.

Page View

Let’s now define a model that each page view event from the stream deserializes into. The record is used for JSON dictionaries and describes fields much like the new dataclasses in Python 3.7:

Create a model for our page view event:

class PageView(faust.Record):
    id: str
    user: str

Type annotations are used not only for defining static types, but also to define how fields are deserialized, and lets you specify models that contains other models, and so on. See the Models, Serialization, and Codecs guide for more information.

Input Stream

Next we define the source topic to read the “page view” events from, and we specify that every value in this topic is of the PageView type.

page_view_topic = app.topic('page_views', value_type=PageView)
Counts Table

Then we define a Table. This is like a Python dictionary, but is distributed across the cluster, partitioned by the dictionary key.

page_views = app.Table('page_views', default=int)
Count Page Views

Now that we have defined our input stream, as well as a table to maintain counts, we define an agent reading each page view event coming into the stream, always incrementing the count for that page in the table.

Create the agent:

@app.agent(page_view_topic)
async def count_page_views(views):
    async for view in views.group_by(PageView.id):
        page_views[view.id] += 1

Note

Here we use group_by to repartition the input stream by the page id. This is so that we maintain counts on each instance sharded by the page id. This way in the case of failure, when we move the processing of some partition to another node, the counts for that partition (hence, those page ids) also move together.

Now that we written our project, let’s try running it to see the counts update in the changelog topic for the table.

Starting Kafka

Before starting a worker, you need to start Zookeeper and Kafka.

First start Zookeeper:

$ $KAFKA_HOME/bin/zookeeper-server-start $KAFKA_HOME/etc/kafka/zookeeper.properties

Then start Kafka:

$ $KAFKA_HOME/bin/kafka-server-start $KAFKA_HOME/etc/kafka/server.properties
Starting the Faust worker

Start the worker, similar to what we did in the Quick Start tutorial:

$ faust -A page_views worker -l info
Seeing it in action

Now let’s produce some fake page views to see things in action. Send this data to the page_views topic:

$ faust -A page_views send page_views '{"id": "foo", "user": "bar"}'

Look at the changelog topic to see the counts. To look at the changelog topic we will use the Kafka console consumer.

$ $KAFKA_HOME/bin/kafka-console-consumer --topic page_views-page_views-changelog --bootstrap-server localhost:9092 --property print.key=True --from-beginning

Note

By default the changelog topic for a given Table has the format <app_id>-<table_name>-changelog

Tutorial: Leader Election

Faust processes streams of data forming pipelines. Sometimes steps in the pipeline require synchronization, but instead of using mutexes, a better solution is to have one of the workers elected as the leader.

An example of such an application is a news crawler. We can elect one of the workers to be the leader, and the leader maintains all subscriptions (the sources to crawl), then periodically tells the other workers in the cluster to process them.

To demonstrate this we implement a straightforward example where we elect one of our workers as the leader. This leader then periodically send out random greetings to be printed out by available workers.

Application

As we did in the Tutorial: Count page views tutorial, we first define your application.

Create a module named leader.py:

# examples/leader.py

import faust

app = faust.App(
    'leader-example',
    broker='kafka://localhost:9092',
    value_serializer='raw',
)
Greetings Agent

Next we define the say agent that will get greetings from the leader and print them out to the console.

Create the agent:

@app.agent()
async def say(greetings):
    async for greeting in greetings:
        print(greeting)

See also

Leader Timer

Now define a timer with the on_leader flag enabled so it only executes on the leader.

The timer will periodically send out a random greeting, to be printed by one of the workers in the cluster.

Create the leader timer:

import random

@app.timer(2.0, on_leader=True)
async def publish_greetings():
    print('PUBLISHING ON LEADER!')
    greeting = str(random.random())
    await say.send(value=greeting)

Note

The greeting could be picked up by the agent say on any one of the running instances.

Starting Kafka

To run the project you first need to start Zookeeper and Kafka.

Start Zookeeper:

$ $KAFKA_HOME/bin/zookeeper-server-start $KAFKA_HOME/etc/kafka/zookeeper.properties

Then start Kafka:

$ $KAFKA_HOME/bin/kafka-server-start $KAFKA_HOME/etc/kafka/server.properties
Starting the Faust worker

Start the Faust worker, similarly to how we do it in the Quick Start tutorial:

$ faust -A leader worker -l info --web-port 6066

Let’s start two more workers in different terminals on the same machine:

$ faust -A leader worker -l info --web-port 6067
$ faust -A leader worker -l info --web-port 6068
Seeing things in Action

Next try to arbitrary shut down (Control-c) some of the workers, to see how the leader stays at just one worker - electing a new leader upon killing a leader – and to see the greetings printed by the workers.

Overview: Faust vs Kafka Streams

KStream
  • .filter()

  • .filterNot()

    Just use the if statement:

    @app.agent(topic)
    async def process(stream):
        async for event in stream:
            if event.amount >= 300.0:
                yield event
    
  • .map()

    Just call the function you want from within the async for iteration:

    @app.agent(Topic)
    async def process(stream):
        async for key, event in stream.items():
            yield myfun(key, event)
    
  • .forEach()

    In KS forEach is the same as map, but ends the processing chain.

  • .peek()

    In KS peek is the same as map, but documents that the action may have a side effect.

  • .mapValues():

    @app.agent(topic)
    async def process(stream):
        async for event in stream:
            yield myfun(event)
    
  • .print():

    @app.agent(topic)
    async def process(stream):
        async for event in stream:
            print(event)
    
  • .writeAsText():

    @app.agent(topic)
    async def process(stream):
        async for key, event in stream.items():
            with open(path, 'a') as f:
                f.write(repr(key, event))
    
  • .flatMap()

  • .flatMapValues()

    @app.agent(topic)
    async def process(stream):
        async for event in stream:
            # split sentences into words
            for word in event.text.split():
                yield event.derive(text=word)
    
  • .branch()

    This is a special case of filter in KS, in Faust just write code and forward events as appropriate:

    app = faust.App('transfer-demo')
    
    # source topic
    source_topic = app.topic('transfers')
    
    # destination topics
    tiny_transfers = app.topic('tiny_transfers')
    small_transfers = app.topic('small_transfers')
    large_transfers = app.topic('large_transfers')
    
    
    @app.agent(source_topic)
    async def process(stream):
        async for event in stream:
            if event.amount >= 1000.0:
                event.forward(large_transfers)
            elif event.amount >= 100.0:
                event.forward(small_transfers)
            else:
                event.forward(tiny_transfers)
    
  • .through():

    @app.agent(topic)
    async def process(stream):
        async for event in stream.through('other-topic'):
            yield event
    
  • .to():

    app = faust.App('to-demo')
    source_topic = app.topic('source')
    other_topic = app.topic('other')
    
    @app.agent(source_topic)
    async def process(stream):
        async for event in stream:
            event.forward(other_topic)
    
  • .selectKey()

    Just transform the key yourself:

    @app.agent(source_topic)
    async def process(stream):
        async for key, value in stream.items():
            key = format_key(key)
    

    If you want to transform the key for processors to use, then you have to change the current context to have the new key:

    @app.agent(source_topic)
    async def process(stream):
        async for event in stream:
            event.req.key = format_key(event.req.key)
    
  • groupBy()

    @app.agent(source_topic)
    async def process(stream):
        async for event in stream.group_by(Withdrawal.account):
            yield event
    
  • groupByKey()

    ???

  • .transform()

  • .transformValues()

    ???

  • .process()

    Process in KS calls a Processor and is usually used to also call periodic actions (punctuation). In Faust you’d rather create a background task:

    import faust
    
    # Useless example collecting transfer events
    # and summing them up after one second.
    
    class Transfer(faust.Record, serializer='json'):
        amount: float
    
    app = faust.App('transfer-demo')
    transfer_topic = app.topic('transfers', value_type=Transfer)
    
    class TransferBuffer:
    
        def __init__(self):
            self.pending = []
            self.total = 0
    
        def flush(self):
            for amount in self.pending:
                self.total += amount
            self.pending.clear()
            print('TOTAL NOW: %r' % (total,))
    
        def add(self, amount):
            self.pending.append(amount)
    buffer = TransferBuffer()
    
    @app.agent(transfer_topic)
    async def task(transfers):
        async for transfer in transfers:
            buffer.add(transfer.amount)
    
    @app.timer(interval=1.0)
    async def flush_buffer():
        buffer.flush()
    
    if __name__ == '__main__':
        app.main()
    
  • join()

  • outerJoin()

  • leftJoin()

    NOT IMPLEMENTED

    async for event in (s1 & s2).join()
    async for event in (s1 & s2).outer_join()
    async for event in (s1 & s2).left_join()
    

Overview: Faust vs. Celery

Faust is a stream processor, so what does it have in common with Celery?

If you’ve used tools such as Celery in the past, you can think of Faust as being able to, not only run tasks, but for tasks to keep history of everything that has happened so far. That is tasks (“agents” in Faust) can keep state, and also replicate that state to a cluster of Faust worker instances.

If you have used Celery you probably know tasks such as this:

from celery import Celery

app = Celery(broker='amqp://')

@app.task()
def add(x, y):
    return x + y

if __name__ == '__main__':
    add.delay(2, 2)

Faust uses Kafka as a broker, not RabbitMQ, and Kafka behaves differently from the queues you may know from brokers using AMQP/Redis/Amazon SQS/and so on.

Kafka doesn’t have queues, instead it has “topics” that can work pretty much the same way as queues. A topic is a log structure so you can go forwards and backwards in time to retrieve the history of messages sent.

The Celery task above can be rewritten in Faust like this:

import faust

app = faust.App('myapp', broker='kafka://')

class AddOperation(faust.Record):
    x: int
    y: int

@app.agent()
async def add(stream):
    async for op in stream:
        yield op.x + op.y

@app.command()
async def produce():
    await add.send(value=AddOperation(2, 2))

if __name__ == '__main__':
    app.main()

Faust also support storing state with the task (see Tables and Windowing), and it supports leader election which is useful for things such as locks.

Learn more about Faust in the Introducing Faust introduction page

to read more about Faust, system requirements, installation instructions, community resources, and more.

or go directly to the Quick Start tutorial

to see Faust in action by programming a streaming application.

then explore the User Guide

for in-depth information organized by topic.

Cheat Sheet

Process events in a Kafka topic

orders_topic = app.topic('orders', value_serializer='json')

@app.agent(orders_topic)
async def process_order(orders):
    async for order in orders:
        print(order['product_id'])

Describe stream data using models

from datetime import datetime
import faust

class Order(faust.Record, serializer='json', isodates=True):
    id: str
    user_id: str
    product_id: str
    amount: float
    price: float
    date_created: datatime = None
    date_updated: datetime = None

orders_topic = app.topic('orders', value_type=Order)

@app.agent(orders_topic)
async def process_order(orders):
    async for order in orders:
        print(order.product_id)

Use async. I/O to perform other actions while processing the stream

# [...]
@app.agent(orders_topic)
async def process_order(orders):
    session = aiohttp.ClientSession()
    async for order in orders:
        async with session.get(f'http://e.com/api/{order.id}/') as resp:
            product_info = await request.text()
            await session.post(
                f'http://cache/{order.id}/', data=product_info)

Buffer up many events at a time

Here we get up to 100 events within a 30 second window:

# [...]
async for orders_batch in orders.take(100, within=30.0):
    print(len(orders))

Aggregate information into a table

orders_by_country = app.Table('orders_by_country', default=int)

@app.agent(orders_topic)
async def process_order(orders):
    async for order in orders.group_by(order.country_origin):
        country = order.country_origin
        orders_by_country[country] += 1
        print(f'Orders for country {country}: {orders_by_country[country]}')

Aggregate information using a window

Count number of orders by country, within the last two days:

orders_by_country = app.Table(
    'orders_by_country',
    default=int,
).hopping(timedelta(days=2))

async for order in orders_topic.stream():
    orders_by_country[order.country_origin] += 1
    # values in this table are not concrete! access .current
    # for the value related to the time of the current event
    print(orders_by_country[order.country_origin].current())

User Guide

Release

1.7

Date

Jul 23, 2019

The App - Define your Faust project

“I am not omniscient, but I know a lot.”

– Goethe, Faust: First part

What is an Application?

An application is an instance of the library, and provides the core API of Faust.

The application can define stream processors (agents), topics, channels, web views, CLI commands and more.

To create one you need to provide a name for the application (the id), a message broker, and a driver to use for table storage (optional)

>>> import faust
>>> app = faust.App('example', broker='kafka://', store='rocksdb://')

It is safe to…

  • Run multiple application instances in the same process:

    >>> app1 = faust.App('demo1')
    >>> app2 = faust.App('demo2')
    
  • Share an app between multiple threads (the app is thread safe).

Application Parameters

You must provide a name for the app, and also you will want to set the broker and store options to configure the broker URL and a storage driver.

Other than that the rest have sensible defaults so you can safely use Faust without changing them.

Here we set the broker URL to Kafka, and the storage driver to RocksDB:

>>> app = faust.App(
...     'myid',
...     broker='kafka://kafka.example.com',
...     store='rocksdb://',
... )

kafka://localhost is used if you don’t configure a broker URL. The first part of the URL (kafka://), is called the scheme and specifies the driver that you want to use (it can also be the fully qualified path to a Python class).

The storage driver decides how to keep distributed tables locally, and Faust version 1.0 supports two options:

rocksdb://

RocksDB an embedded database (production)

memory://

In-memory (development)

Using the memory:// store is OK when developing your project and testing things out, but for large tables, it can take hours to recover after a restart, so you should never use it in production.

RocksDB recovers tables in seconds or less, is embedded and don’t require a server or additional infrastructure. It also stores table data on the file system in such a way that tables can exceed the size of available memory.

See also

Configuration Reference: for a full list of supported configuration

settings – these can be passed as keyword arguments when creating the faust.App.

Actions
app.topic() – Create a topic-description

Use the topic() method to create a topic description, used to tell stream processors what Kafka topic to read from, and how the keys and values in that topic are serialized:

topic = app.topic('name_of_topic')

@app.agent(topic)
async def process(stream):
    async for event in stream:
        ...
Topic Arguments
  • key_type/value_type: ModelArg

    Use the key_type and value_type arguments to specify the models used for key and value serialization:

    class MyValueModel(faust.Record):
        name: str
        value: float
    
    topic = app.topic(
        'name_of_topic',
        key_type=bytes,
        value_type=MyValueModel,
    )
    

    The default key_type is bytes and treats the key as a binary string. The key can also be specified as a model type (key_type=MyKeyModel).

    See also

  • key_serializer/value_serializer: CodecArg

    The codec/serializer type used for keys and values in this topic.

    If not specified the default will be taken from the key_serializer and value_serializer settings.

    See also

  • partitions: int

    The number of partitions this topic should have. If not specified the default in the topic_partitions setting is used.

    Note: if this is an automatically created topic, or an externally managed source topic, then please set this value to None.

  • retention: Seconds

    Number of seconds (as float/timedelta) to keep messages in the topic before they can be expired by the server.

  • compacting: bool

    Set to True if this should be a compacting topic. The Kafka broker will then periodically compact the topic, only keeping the most recent value for a key.

  • acks: bool

    Enable automatic acknowledgment for this topic. If you disable this then you are responsible for manually acknowledging each event.

  • internal: bool

    If set to True this means we own and are responsible for this topic: we are allowed to create or delete the topic.

  • maxsize: int

    The maximum buffer size used for this channel, with default taken from the stream_buffer_maxsize setting. When this buffer is exceeded the worker will have to wait for agent/stream consumers to catch up, and if the buffer is frequently full this will negatively affect performance.

    Try tweaking the buffer sizes, but also the broker_commit_interval setting to make sure it commits more frequently with larger buffer sizes.

app.channel() – Create a local channel

Use channel() to create an in-memory communication channel:

import faust

app = faust.App('channel')

class MyModel(faust.Record):
    x: int

channel = app.channel(value_type=MyModel)

@app.agent(channel)
async def process(stream):
    async for event in stream:
        print(f'Received: {event!r}')

@app.timer(1.0)
async def populate():
    await channel.send(MyModel(303))

See also

Channel Arguments
  • key_type/value_type: ModelArg

    Use the key_type and value_type arguments to specify the models used for key and value serialization:

    class MyValueModel(faust.Record):
        name: str
        value: float
    
    channel = app.channel(key_type=bytes, value_type=MyValueModel)
    
  • key_serializer/value_serializer: CodecArg

    The codec/serializer type used for keys and values in this channel.

    If not specified the default will be taken from the key_serializer and value_serializer settings.

  • maxsize: int

    This is the maximum number of pending messages in the channel. If this number is exceeded any call to channel.put(value) will block until something consumes another message from the channel.

    Defaults to the stream_buffer_maxsize setting.

app.Table() – Define a new table

Use Table() to define a new distributed dictionary; the only required argument is a unique and identifying name. Here we also set a default value so the table acts as a defaultdict:

transfer_counts = app.Table(
    'transfer_counts',
    default=int,
    key_type=str,
    value_type=int,
)

The default argument is passed in as a callable, and in our example calling int() returns the number zero, so whenever a key is missing in the table, it’s initialized with a value of zero:

>>> table['missing']
0

>>> table['also-missing'] += 1
>>> table['also-missing']
1

The table needs to relate every update to an associated source topic event, so you must be iterating over a stream to modify a table. Like in this agent where also .group_by() is used to repartition the stream by account id, ensuring every unique account delivers to the same agent instance, and that the count-per-account is recorded accurately:

@app.agent(transfers_topic)
async def transfer(transfers):
    async for transfer in transfers.group_by(Transfer.account):
        transfer_counts[transfer.account] += 1

The agent modifying the table cannot process the source topic out of order, so only agents with concurrency=1 are allowed to update tables.

See also

  • The Tables and Windowing guide – for more information about tables.

    Learn how to create a “windowed table” where aggregate values are placed into configurable time windows, providing you with answers to questions like “what was the value in the last five minutes”, or “what was the value of this count like yesterday”.

Table Arguments
  • name: str

    The name of the table. This must be unique as two tables with the same in the same application will share changelog topics.

  • help: str

    Brief description of table purpose.

  • default: Callable[[], Any]

    User provided function called to get default value for missing keys.

    Without any default this attempt to access a missing key will raise KeyError:

    >>> table = app.Table('nodefault', default=None)
    
    >>> table['missing']
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    KeyError: 'missing'
    

    With the default callback set to int, the same missing key will now set the key to 0 and return 0:

    >>> table = app.Table('hasdefault', default=int)
    
    >>> table['missing']
    0
    
  • key_type/value_type: ModelArg

    Use the key_type and value_type arguments to specify the models used for serializing/deserializing keys and values in this table.

    class MyValueModel(faust.Record):
        name: str
        value: float
    
    table = app.Table(key_type=bytes, value_type=MyValueModel)
    
  • store: str or URL

    The name of a storage backend to use, or the URL to one.

    Default is taken from the store setting.

  • partitions: int

    The number of partitions for the changelog topic used by this table.

    Default is taken from the topic_partitions setting.

  • changelog_topic: Topic

    The changelog topic description to use for this table.

    Only for advanced users who know what they’re doing.

  • recovery_buffer_size: int

    How often we flush changelog records during recovery. Default is every 1000 changelog messages.

  • standby_buffer_size: int

    How often we flush changelog records during recovery. Default is None (always).

  • on_changelog_event: Callable[[EventT], Awaitable[None]]

    A callback called for every changelog event during recovery and while keeping table standbys in sync.

@app.agent() – Define a new stream processor

Use the agent() decorator to define an asynchronous stream processor:

# examples/agent.py
import faust

app = faust.App('stream-example')

@app.agent()
async def myagent(stream):
    """Example agent."""
    async for value in stream:
        print(f'MYAGENT RECEIVED -- {value!r}')
        yield value

if __name__ == '__main__':
    app.main()

Terminology

  • “agent” – A named group of actors processing a stream.

  • “actor” – An individual agent instance.

No topic was passed to the agent decorator, so an anonymous topic will be created for it. Use the faust agents program to list the topics used by each agent:

$ python examples/agent.py agents
┌Agents────┬───────────────────────────────────────┬────────────────┐
│ name     │ topic                                 │ help           │
├──────────┼───────────────────────────────────────┼────────────────┤
│ @myagent │ stream-example-examples.agent.myagent │ Example agent. │
└──────────┴───────────────────────────────────────┴────────────────┘

The autogenerated topic name stream-example-examples.agent.myagent is generated from the application id setting, the application version setting, and the fully qualified path of the agent (examples.agent.myagent).

Start a worker to consume from the topic:

$ python examples/agent.py worker -l info

Next, in a new console, send the agent a value using the faust send program. The first argument to send is the name of the topic, and the second argument is the value to send (use --key=k to specify key). The name of the topic can also start with the @ character to name an agent instead.

Use @agent to send a value of "hello" to the topic of our agent:

$ python examples/agent.py send @myagent hello

Finally, you should see in the worker console that it received our message:

MYAGENT RECEIVED -- b'hello'

See also

Agent Arguments
  • name: str

    The name of the agent is automatically taken from the decorated function and the module it is defined in.

    You can also specify the name manually, but note that this should include the module name, e.g.: name='proj.agents.add'.

  • channel: Channel

    The channel or topic this agent should consume from.

  • concurrency: int

    The number of concurrent actors to start for this agent on every worker instance.

    For example if you have an agent processing RSS feeds, a concurrency of 100 means you can process up to hundred RSS feeds at the same time on every worker instance that you start.

    Adding concurrency to your agent also means it will process events in the topic out of order, and should you rewind the stream that order may differ when processing the events a second time.

    Concurrency and tables

    Concurrent agents are not allowed to modify tables: an exception is raised if this is attempted.

    They are, however, allowed to read from tables.

  • sink: Iterable[SinkT]

    For agents that also yield a value: forward the value to be processed by one or more “sinks”.

    A sink can be another agent, a topic, or a callback (async or non-async).

    See also

    Sinks – for more information on using sinks.

  • on_error: Callable[[Agent, BaseException], None]

    Optional error callback to be called when this agent raises an unexpected exception.

  • supervisor_strategy: mode.SupervisorStrategyT

    A supervisor strategy to decide what happens when the agent raises an exception.

    The default supervisor strategy is mode.OneForOneSupervisor – restarting one and one actor as they crash.

    Other built-in supervisor strategies include:

    • mode.OneForAllSupervisor

      If one agent instance of this type raises an exception we will restart all other agent instances of this type.

    • mode.CrashingSupervisor

      If one agent instance of this type raises an exception we will crash the worker instance.

  • **kwargs

    If the channel argument is not specified the agent will use an automatically named topic.

    Any additional keyword arguments are considered to be configuration for this topic, with support for the same arguments as app.topic().

@app.task() – Define a new support task.

Use the task() decorator to define an asynchronous task to be started with the app:

@app.task()
async def mytask():
    print('APP STARTED AND OPERATIONAL')

The task will be started when the app starts, by scheduling it as an asyncio.Task on the event loop. It will only be started once the app is fully operational, meaning it has started consuming messages from Kafka.

See also

@app.timer() – Define a new periodic task

Use the timer() decorator to define an asynchronous periodic task that runs every 30.0 seconds:

@app.timer(30.0)
async def my_periodic_task():
    print('THIRTY SECONDS PASSED')

The timer will start 30 seconds after the worker instance has started and is in an operational state.

See also

Timer Arguments
  • on_leader: bool

    If enabled this timer will only execute on one of the worker instances at a time – that is only on the leader of the cluster.

    This can be used as a distributed mutex to execute something on one machine at a time.

@app.page() – Define a new Web View

Use the page() decorator to define a new web view from an async function:

# examples/view.py
import faust

app = faust.App('view-example')

@app.page('/path/to/view/')
async def myview(web, request):
    print(f'FOO PARAM: {request.query["foo"]}')

if __name__ == '__main__':
    app.main()

Next run a worker instance to start the web server on port 6066 (default):

$ python examples/view.py worker -l info

Then visit your view in the browser by going to http://localhost:6066/path/to/view/:

$ open http://localhost:6066/path/to/view/

See also

app.main() – Start the faust command-line program.

To have your script extend the faust program, you can call app.main():

# examples/command.py
import faust

app = faust.App('umbrella-command-example')

if __name__ == '__main__':
    app.main()

This will use the arguments in sys.argv and will support the same arguments as the faust umbrella command.

To see a list of available commands, execute your program:

$ python examples/command.py

To get help for a particular subcommand run:

$ python examples/command.py worker --help

See also

  • The main() method in the API reference.

@app.command() – Define a new command-line command

Use the command() decorator to define a new subcommand for the faust command-line program:

# examples/command.py
import faust

app = faust.App('example-subcommand')

@app.command()
async def example():
    """This docstring is used as the command help in --help."""
    print('RUNNING EXAMPLE COMMAND')

if __name__ == '__main__':
    app.main()

You can now run your subcommand:

$ python examples/command.py example
RUNNING EXAMPLE COMMAND

See also

@app.service() – Define a new service

The service() decorator adds a custom mode.Service class as a dependency of the app.

What is a Service?

A service is something that can be started and stopped, and Faust is built out of many such services.

The mode library was extracted out of Faust for being generally useful, and Faust uses this library as a dependency.

Examples of classes that are services in Faust include: the App, a stream, an agent, a table, the TableManager, the Conductor, and just about everything that is started and stopped is.

Services can also have background tasks, or execute in an OS thread.

You can decorate a service class to have it start with the app:

# examples/service.py
import faust
from mode import Service

app = faust.App('service-example')

@app.service
class MyService(Service):

    async def on_start(self):
        print('MYSERVICE IS STARTING')

    async def on_stop(self):
        print('MYSERVICE IS STOPPING')

    @Service.task
    async def _background_task(self):
        while not self.should_stop:
            print('BACKGROUND TASK WAKE UP')
            await self.sleep(1.0)

if __name__ == '__main__':
    app.main()

To start the app and see it and action run a worker:

python examples/service.py worker -l info

You can also add services at runtime in application subclasses:

class MyApp(App):

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.some_service = self.service(SomeService())
Application Signals

You may have experience signals in other frameworks such as Django and Celery.

The main difference between signals in Faust is that they accept positional arguments, and that they also come with asynchronous versions for use with asyncio.

Signals are an implementation of the Observer design pattern.

App.on_produce_message

New in version 1.6.

sender

faust.App

arguments

key, value, partition, timestamp, headers

synchronous

This is a synchronous signal (do not use async def).

The on_produce_message signal as a synchronous signal called before producing messages.

This can be used to attach custom headers to Kafka messages:

from typing import Any, List, Tuple
from faust.types import AppT
from mode.utils.compat import want_bytes

@app.on_produce_message.connect()
def on_produce_attach_trace_headers(
        self,
        sender: AppT,
        key: bytes = None,
        value: bytes = None,
        partition: int = None,
        timestamp: float = None,
        headers: List[Tuple[str, bytes]] = None,
        **kwargs: Any) -> None:
    test = current_test()
    if test is not None:
        # Headers at this point is a list of ``(key, value)`` pairs.
        # Note2: values in headers must be :class:`bytes`.
        headers.extend([
            (k, want_bytes(v)) for k, v in test.as_headers().items()
        ])
App.on_partitions_revoked
sender

faust.App

arguments

Set[TP]

The on_partitions_revoked signal is an asynchronous signal called after every Kafka rebalance and provides a single argument which is the set of newly revoked partitions.

Add a callback to be called when partitions are revoked:

from typing import Set
from faust.types import AppT, TP

@app.on_partitions_revoked.connect
async def on_partitions_revoked(app: AppT,
                                revoked: Set[TP], **kwargs) -> None:
    print(f'Partitions are being revoked: {revoked}')

Using app as an instance when connecting here means we will only be called for that particular app instance. If you want to be called for all app instances then you must connect to the signal of the class (App):

@faust.App.on_partitions_revoked.connect
async def on_partitions_revoked(app: AppT,
                                revoked: Set[TP], **kwargs) -> None:
    ...

Signal handlers must always accept **kwargs.

Signal handler must always accept **kwargs so that they are backwards compatible when new arguments are added.

Similarly new arguments must be added as keyword arguments to be backwards compatible.

App.on_partitions_assigned
sender

faust.App

arguments

Set[TP]

The on_partitions_assigned signal is an asynchronous signal called after every Kafka rebalance and provides a single argument which is the set of assigned partitions.

Add a callback to be called when partitions are assigned:

from typing import Set
from faust.types import AppT, TP

@app.on_partitions_assigned.connect
async def on_partitions_assigned(app: AppT,
                                 assigned: Set[TP], **kwargs) -> None:
    print(f'Partitions are being assigned: {assigned}')
App.on_configured
sender

faust.App

arguments

faust.Settings

synchronous

This is a synchronous signal (do not use async def).

Called as the app reads configuration, just before the application configuration is set, but after the configuration is read.

Takes arguments: (app, conf), where conf is the faust.Settings object being built and is the instance that app.conf will be set to after this signal returns.

Use the on_configured signal to configure your app:

import os
import faust

app = faust.App('myapp')

@app.on_configured.connect
def configure(app, conf, **kwargs):
    conf.broker = os.environ.get('FAUST_BROKER')
    conf.store = os.environ.get('STORE_URL')
App.on_before_configured
sender

faust.App

arguments

none

synchronous

This is a synchronous signal (do not use async def).

Called before the app reads configuration, and before the App.on_configured signal is dispatched.

Takes only sender as argument, which is the app being configured:

@app.on_before_configured.connect
def before_configuration(app, **kwargs):
    print(f'App {app} is being configured')
App.on_after_configured
sender

faust.App

arguments

none

synchronous

This is a synchronous signal (do not use async def).

Called after app is fully configured and ready for use.

Takes only sender as argument, which is the app that was configured:

@app.on_after_configured.connect
def after_configuration(app, **kwargs):
    print(f'App {app} has been configured.')
App.on_worker_init
sender

faust.App

arguments

none

synchronous

This is a synchronous signal (do not use async def).

Called by the faust worker program (or when using app.main()) to apply worker specific customizations.

Takes only sender as argument, which is the app a worker is being started for:

@app.on_worker_init.connect
def on_worker_init(app, **kwargs):
    print(f'Working starting for app {app}')
Starting the App

You can start a worker instance for your app from the command-line, or you can start it inline in your Python process. To accommodate the many ways you may want to embed a Faust application, starting the app have several possible entry points:

App entry points:

  1. faust worker

    The faust worker program starts a worker instance for an app from the command-line.

    You may turn any self-contained module into the faust program by adding this to the end of the file:

    if __name__ == '__main__':
        app.main()
    

    For packages you can add a __main__.py module or setuptools entry points to setup.py.

    If you have the module name where an app is defined, you can start a worker for it with the faust -A option:

    $ faust -A myproj worker -l info
    

    The above will import the app from the myproj module using from myproj import app. If you need to specify a different attribute you can use a fully qualified path:

    $ faust -A myproj:faust_app worker -l info
    
  2. -> faust.cli.worker.worker (CLI interface)

    This is the faust worker program defined as a Python click command.

    It is responsible for:

    • Parsing the command-line arguments supported by faust worker.

    • Printing the banner box (you will not get that with entry point 3 or 4).

    • Starting the faust.Worker (see next step).

  3. -> faust.Worker

    This is used for starting a worker from Python when you also want to install process signal handlers, etc. It supports the same options as on the faust worker command-line, but now they are passed in as keyword arguments to faust.Worker.

    The Faust worker is a subclass of mode.Worker, which makes sense given that Faust is built out of many different mode services starting in a particular order.

    The faust.Worker entry point is responsible for:

    • Changing the directory when the workdir argument is set.

    • Setting the process title (when setproctitle is installed), for more helpful entry in ps listings.

    • Setting up logging: handlers, formatters and level.

    • If --debug is enabled:

      • Starting the aiomonitor debugging back door.

      • Starting the blocking detector.

    • Setting up TERM and INT signal handlers.

    • Setting up the USR1 cry handler that logs a traceback.

    • Starting the web server.

    • Autodiscovery (see autodiscovery).

    • Starting the faust.App (see next step).

    • Properly shut down of the event loop on exit.

    To start a worker,

    1. from synchronous code, use Worker.execute_from_commandline:

      >>> worker = Worker(app)
      >>> worker.execute_from_commandline()
      
    2. or from an async def function call await worker.start():

      Warning

      You will be responsible for gracefully shutting down the event loop.

      async def start_worker(worker: Worker) -> None:
          await worker.start()
      
      def manage_loop():
          loop = asyncio.get_event_loop()
          worker = Worker(app, loop=loop)
          try:
              loop.run_until_complete(start_worker(worker))
          finally:
              worker.stop_and_shutdown_loop()
      

    Multiple apps

    If you want your worker to start multiple apps, you would have to pass them in with the *services starargs:

    worker = Worker(app1, app2, app3, app4)
    

    This way the extra apps will be started together with the main app, and the main app of the worker (worker.app) will end up being the first positional argument (app1).

    The problem with starting multiple apps is that each app will start a web server by default.

    If you want a web server for every app, you must configure the web port for each:

    apps = [app1, app2, app3, app4]
    for i, app in enumerate(apps):
        app.conf.web_port = 6066 + i
    
    worker = Worker(*apps)
    
  4. -> faust.App

    The “worker” only concerns itself with the terminal, process signal handlers, logging, debugging mechanisms, etc., the rest is up to the app.

    You can call await app.start() directly to get a side-effect free instance that can be embedded in any environment. It won’t even emit logs to the console unless you have configured logging manually, and it won’t set up any TERM/INT signal handlers, which means finally blocks won’t execute at shutdown.

    Start app directly:

    async def start_app(app):
        await app.start()
    

    This will block until the worker shuts down, so if you want to start other parts of your program, you can start this in the background:

    def start_in_loop(app):
        loop = asyncio.get_event_loop()
        loop.ensure_future(app.start())
    

    If your program is written as a set of Mode services, you can simply add the app as a dependency to your service:

    class MyService(mode.Service):
    
        def on_init_dependencies(self):
            return [faust_app]
    
Client-Only Mode

The app can also be started in “client-only” mode, which means the app can be used for sending agent RPC requests and retrieving replies, but not start a full Faust worker:

await app.start_client()
Projects and Directory Layout

Faust is a library; it does not mandate any specific directory layout and integrates with any existing framework or project conventions.

That said, new projects written from scratch using Faust will want some guidance on how to organize, so we include this as a suggestion in the documentation.

Small/Standalone Projects

You can create a small Faust service with no supporting directories at all, we refer to this as a “standalone module”: a module that contains everything it needs to run a full service.

The Faust distribution comes with several standalone examples, such as examples/word_count.py.

Medium/Large Projects

Projects need more organization as they grow larger, so we convert the standalone module into a directory layout:

+ proj/
    - setup.py
    - MANIFEST.in
    - README.rst
    - setup.cfg

    + proj/
        - __init__.py
        - __main__.py
        - app.py

        + users/
        -   __init__.py
        -   agents.py
        -   commands.py
        -   models.py
        -   views.py

        + orders/
            -   __init__.py
            -   agents.py
            -   models.py
            -   views.py
Problem: Autodiscovery

Now we have many @app.agent/@app.timer’/@app.command decorators, and models spread across a nested directory. These have to be imported by the program to be registered and used.

Enter the autodiscover setting:

# proj/app.py
import faust

app = faust.App(
    'proj',
    version=1,
    autodiscover=True,
    origin='proj'   # imported name for this project (import proj -> "proj")
)

def main() -> None:
    app.main()

Using the autodiscover and setting it to True means it will traverse the directory of the origin module to find agents, timers, tasks, commands and web views, etc.

If you want more careful control you can specify a list of modules to traverse instead:

app = faust.App(
    'proj',
    version=1,
    autodiscover=['proj.users', 'proj.orders'],
    origin='proj'
)

Autodiscovery when using Django

When using autodiscover=True in a Django project, only the apps listed in INSTALLED_APPS will be traversed.

See also Django Projects.

Problem: Entry Point

The proj/__main__.py module can act as the entry point for this project:

# proj/__main__.py
from proj.app import app
app.main()

After creating this module you can now start a worker by doing:

python -m proj worker -l info

Now you’re probably thinking, “I’m too lazy to type python dash em all the time”, but don’t worry: take it one step further by using setuptools to install a command-line program for your project.

  1. Create a setup.py for your project.

    This step is not needed if you already have one.

    You can read lots about creating your setup.py in the setuptools documentation here: https://setuptools.readthedocs.io/en/latest/setuptools.html#developer-s-guide

    A minimum example that will work well enough:

    #!/usr/bin/env python
    from setuptools import find_packages, setup
    
    setup(
        name='proj',
        version='1.0.0',
        description='Use Faust to blah blah blah',
        author='Ola Normann',
        author_email='ola.normann@example.com',
        url='http://proj.example.com',
        platforms=['any'],
        license='Proprietary',
        packages=find_packages(exclude=['tests', 'tests.*']),
        include_package_data=True,
        zip_safe=False,
        install_requires=['faust'],
        python_requires='~=3.6',
    )
    

    For inspiration you can also look to the setup.py files in the faust and mode source code distributions.

  2. Add the command as a setuptools entry point.

    To your setup.py add the following argument:

    setup(
        ...,
        entry_points={
            'console_scripts': [
                'proj = proj.app:main',
            ],
        },
    )
    

    This essentially defines that the proj program runs from proj.app import main

  3. Install your package using setup.py or pip.

    When developing your project locally you should use setup.py develop to use the source code directory as a Python package:

    $ python setup.py develop
    

    You can now run the proj command you added to setup.py in step two:

    $ proj worker -l info
    

    Why use develop? You can use python setup.py install, but then you have to run that every time you make modifications to the source files.

Another upside to using setup.py is that you can distribute your projects as pip install-able packages.

Django Projects

Django has their own conventions for directory layout, but your Django reusable apps will want some way to import your Faust app.

We believe the best place to define the Faust app in a Django project, is in a dedicated reusable app. See the faustapp app in the examples/django directory in the Faust source code distribution.

Miscellaneous
Why use applications?

For special needs, you can inherit from the faust.App class, and a subclass will have the ability to change how almost everything works.

Comparing the application to the interface of frameworks like Django, there are clear benefits.

In Django, the global settings module means having multiple configurations are impossible, and with an API organized by modules, you sometimes end up with lots of import statements and keeping track of many modules. Further, you often end up monkey patching to change how something works.

The application keeps the library flexible to changes, and allows for many applications to coexist in the same process space.

Reference

See faust.App in the API reference for a full list of methods and attributes supported.

Agents - Self-organizing Stream Processors

What is an Agent?

An agent is a distributed system processing the events in a stream.

Every event is a message in the stream and is structured as a key/value pair that can be described using models for type safety and straightforward serialization support.

Streams can be divided equally in a round-robin manner, or partitioned by the message key; this decides how the stream divides between available agent instances in the cluster.

Create an agent

To create an agent, you need to use the @app.agent decorator on an async function taking a stream as the argument. Further, it must iterate over the stream using the async for keyword to process the stream:

# faustexample.py

import faust

app = faust.App('example', broker='kafka://localhost:9092')


@app.agent()
async def myagent(stream):
    async for event in stream:
        ...  # process event
Start a worker for the agent

The faust worker program can be used to start a worker from the same directory as the faustexample.py file:

$ faust -A faustexample worker -l info

Whenever a worker is started or stopped, this will force the cluster to rebalance and divide available partitions between all the workers.

Partitioning

When an agent reads from a topic, the stream is partitioned based on the key of the message. For example, the stream could have keys that are account ids, and values that are high scores, then partitioning will decide that any message with the same account id as key, is always delivered to the same agent instance.

Sometimes you’ll have to repartition the stream, to ensure you are receiving the right portion of the data. See Streams - Infinite Data Structures for more information on the Stream.group_by() method.

Round-Robin

If you don’t set a key (key=None), the messages will be delivered to available workers in round-robin order. This is useful to distribute work evenly between a cluster of workers.

Fault tolerance

If the worker for a partition fails, or is blocked from the network for any reason, there’s no need to worry because Kafka will move that partition to a worker that’s online.

Faust also takes advantage of “standby tables” and a custom partition manager that prefers to promote any node with a full copy of the data, saving startup time and ensuring availability.

This is an agent that adds numbers (full example):

# examples/agent.py
import faust

# The model describes the data sent to our agent,
# We will use a JSON serialized dictionary
# with two integer fields: a, and b.
class Add(faust.Record):
    a: int
    b: int

# Next, we create the Faust application object that
# configures our environment.
app = faust.App('agent-example')

# The Kafka topic used by our agent is named 'adding',
# and we specify that the values in this topic are of the Add model.
# (you can also specify the key_type if your topic uses keys).
topic = app.topic('adding', value_type=Add)

@app.agent(topic)
async def adding(stream):
    async for value in stream:
        # here we receive Add objects, add a + b.
        yield value.a + value.b

Starting a worker will start a single instance of this agent:

$ faust -A examples.agent worker -l info

To send values to it, open a second console to run this program:

# examples/send_to_agent.py
import asyncio
from .agent import Add, adding

async def send_value() -> None:
    print(await adding.ask(Add(a=4, b=4)))

if __name__ == '__main__':
    loop = asyncio.get_event_loop()
    loop.run_until_complete(send_value())
$ python examples/send_to_agent.py

Define commands with the @app.command decorator.

You can also use CLI Commands to add actions for your application on the command line. Use the @app.command decorator to rewrite the example program above (examples/agent.py), like this:

@app.command()
async def send_value() -> None:
    print(await adding.ask(Add(a=4, b=4)))

After adding this to your examples/agent.py module, run your new command using the faust program:

$ faust -A examples.agent send_value

You may also specify command line arguments and options:

from faust.cli import argument, option

@app.command(
    argument('a', type=int, help='First number to add'),
    argument('b', type=int, help='Second number to add'),
    option('--print/--no-print', help='Enable debug output'),
)
async def send_value(a: int, b: int, print: bool) -> None:
    if print:
        print(f'Sending Add({x}, {y})...')
    print(await adding.ask(Add(a, b)))

Then pass those arguments on the command line:

$ faust -A examples.agent send_value 4 8 --print
Sending Add(4, 8)...
12

The Agent.ask() method adds additional metadata to the message: the return address (reply-to) and a correlating id (correlation_id).

When the agent sees a message with a return address, it will reply with the result generated from that request.

Static types

Faust is typed using the type annotations available in Python 3.6, and can be checked using the mypy type checker.

Add type hints to your agent function like this:

from typing import AsyncIterable
from faust import StreamT

@app.agent(topic)
async def adding(stream: StreamT[Add]) -> AsyncIterable[int]:
    async for value in stream:
        yield value.a + value.b

The StreamT type used for the agent’s stream argument is a subclass of AsyncIterable extended with the stream API. You could type this call using AsyncIterable, but then mypy would stop you with a typing error should you use stream-specific methods such as .group_by(), through(), etc.

Defining Agents
The Channel

The channel argument to the agent decorator defines the source of events that the agent reads from.

This can be:

  • A channel

    Channels are in-memory, and work like a asyncio.Queue.

    They also form a basic abstraction useful for integrating with many messaging systems (RabbitMQ, Redis, ZeroMQ, etc.)

  • A topic description (as returned by app.topic())

    Describes one or more topics to subscribe to, including a recipe of how to deserialize it:

    topic = app.topic('topic_name1', 'topic_name2',
                      key_type=Model,
                      value_type=Model,
                      ...)
    

    Should the topic description provide multiple topic names, the main topic of the agent will be the first topic in that list ("topic_name1").

    The key_type and value_type describe how to serialize and deserialize messages in the topic, and you provide it as a model (such as faust.Record), a faust.Codec, or the name of a serializer.

    If not specified it will use the default serializer defined by the app.

Tip

If you don’t specify a topic, the agent will use the agent name as the topic: the name will be the fully qualified name of the agent function (e.g., examples.agent.adder).

See also

The Stream

The agent decorator expects a function taking a single argument (unary).

The stream passed in as the argument to the agent is an async iterable Stream instance, created from the topic/channel provided to the decorator:

@app.agent(topic_or_channel)
async def myagent(stream):
    async for item in stream:
        ...

Iterating over this stream, using the async for keyword will iterate over messages in the topic/channel.

If you need to repartition the stream, you may use the group_by() method of the Stream API, like in this example where we repartition by account ID:

# examples/groupby.py
import faust

class BankTransfer(faust.Record):
    account_id: str
    amount: float

app = faust.App('groupby')
topic = app.topic('groupby', value_type=BankTransfer)

@app.agent(topic)
async def stream(s):
    async for transfer in s.group_by(BankTransfer.account_id):
        # transfers will now be distributed such that transfers
        # with the same account_id always arrives to the same agent
        # instance
        ...

See also

Concurrency

Use the concurrency argument to start multiple instances of an agent on every worker instance. Each agent instance (actor) will process items in the stream concurrently (and in no particular order).

Warning

Concurrent instances of an agent will process the stream out-of-order, so you cannot mutate tables from within the agent function:

An agent having concurrency > 1, can only read from a table, never write.

Here’s an agent example that can safely process the stream out of order.

Our hypothetical backend system publishes a message to the Kafka “news” topic every time a news article is published by an author.

We define an agent that consumes from this topic and for every new article will retrieve the full article over HTTP, then store that in a database:

class Article(faust.Record, isodates=True):
    url: str
    date_published: datetime

news_topic = app.topic('news', value_type=Article)

@app.agent(news_topic, concurrency=10)
async def imports_news(articles):
    async for article in articles:
        async with app.http_client.get(article.url) as response:
            await store_article_in_db(response)
Sinks

Sinks can be used to perform additional actions after an agent has processed an event in the stream, such as forwarding alerts to a monitoring system, logging to Slack, etc. A sink can be callable, async callable, a topic/channel or another agent.

Function Callback

Regular functions take a single argument (the result after processing):

def mysink(value):
    print(f'AGENT YIELD: {value!r}')

@app.agent(sink=[mysink])
async def myagent(stream):
    async for value in stream:
        yield process_value(value)
Async Function Callback

Asynchronous functions also work:

async def mysink(value):
    print(f'AGENT YIELD: {value!r}')
    # OBS This will force the agent instance that yielded this value
    # to sleep for 1.0 second before continuing on the next event
    # in the stream.
    await asyncio.sleep(1)

@app.agent(sink=[mysink])
async def myagent(stream):
    ...
Topic

Specifying a topic as the sink means the agent will forward all processed values to that topic:

agent_log_topic = app.topic('agent_log')

@app.agent(sink=[agent_log_topic])
async def myagent(stream):
    ...
Another Agent

Specifying another agent as the sink means the agent will forward all processed values to that other agent:

@app.agent()
async def agent_b(stream):
    async for event in stream:
        print(f'AGENT B RECEIVED: {event!r}')

@app.agent(sink=[agent_b])
async def agent_a(stream):
    async for event in stream:
        print(f'AGENT A RECEIVED: {event!r}')
When agents raise an error

If an agent raises an exception during processing of an event will we mark that event as completed? (acked)

Currently the source message will be acked and not processed again, simply because it violates “”exactly-once” semantics”.

It is common to think that we can just retry that event, but it is not as easy as it seems. Let’s analyze our options apart from marking the event as complete.

  • Retrying

    The retry would have to stop processing of the topic so that order is maintained: the next offset in the topic can only be processed after the event is retried.

    We can move the event to the “back of the queue”, but that means the topic is now out of order.

  • Crashing

    Crashing the instance to require human intervention is a choice, but far from ideal considering how common mistakes in code and unexpected exceptions are. It may be better to log the error and have ops replay and reprocess the stream on notification.

Using Agents
Cast or Ask?

When communicating with an agent, you can ask for the result of the request to be forwarded to another topic: this is the reply_to topic.

The reply_to topic may be the topic of another agent, a source topic populated by a different system, or it may be a local ephemeral topic collecting replies to the current process.

If you perform a cast, you’re passively sending something to the agent, and it will not reply back.

Systems perform better when no synchronization is required, so you should try to solve your problems in a streaming manner. If B needs to happen after A, try to have A call B instead (which could be accomplished using reply_to=B).

cast(value, *, key=None, partition=None)

A cast is non-blocking as it will not wait for a reply:

await adder.cast(Add(a=2, b=2))

The agent will receive the request, but it will not send a reply.

ask(value, *, key=None, partition=None, reply_to=None, correlation_id=None)

Asking an agent will send a reply back to process that sent the request:

value = await adder.ask(Add(a=2, b=2))
assert value == 4
send(key, value, partition, reply_to=None, correlation_id=None)

The Agent.send method is the underlying mechanism used by cast and ask.

Use it to send the reply to another agent:

await adder.send(value=Add(a=2, b=2), reply_to=another_agent)
Streaming Map/Reduce

These map/reduce operations are shortcuts used to stream lots of values into agents while at the same time gathering the results.

map streams results as they come in (out-of-order), and join waits until all the steps are complete (back-to-order) and return the results in a list with order preserved:

map(values: Union[AsyncIterable[V], Iterable[V]])

Map takes an async iterable, or a regular iterable, and returns an async iterator yielding results as they come in:

async for reply in agent.map([1, 2, 3, 4, 5, 6, 7, 8]):
    print(f'RECEIVED REPLY: {reply!r}')

The iterator will start before all the messages have been sent, and should be efficient even for infinite lists.

As the map executes concurrently, the replies will not appear in any particular order.

kvmap(items: Union[AsyncIterable[Tuple[K, V], Iterable[Tuple[K, V]]]])

Same as map, but takes an async iterable/iterable of (key, value) tuples, where the key in each pair is used as the Kafka message key.

join(values: Union[AsyncIterable[V], Iterable[V]])

Join works like map but will wait until all of the values have been processed and returns them as a list in the original order.

The await will continue only after the map sequence is over, and all results are accounted for, so do not attempt to use join together with infinite data structures ;-)

results = await pow2.join([1, 2, 3, 4, 5, 6, 7, 8])
assert results == [1, 4, 9, 16, 25, 36, 49, 64]
kvjoin(items: Union[AsyncIterable[Tuple[K, V]], Iterable[Tuple[K, V]]])

Same as join, but takes an async iterable/iterable of (key, value) tuples, where the key in each pair is used as the message key.

Streams - Infinite Data Structures

“Everything transitory is but an image.”

– Goethe, Faust: Part II

Basics

A stream is an infinite async iterable, consuming messages from a channel/topic:

@app.agent(my_topic)
async def process(stream):
    async for value in stream:
        ...

The above agent is how you usually define stream processors in Faust, but you can also create stream objects manually at any point with the caveat that this can trigger a Kafka rebalance when doing so at runtime:

stream = app.stream(my_topic)  # or: my_topic.stream()
async for value in stream:
    ...

The stream needs to be iterated over to be processed, it will not be active until you do.

When iterated over the stream gives deserialized values, but you can also iterate over key/value pairs (using items()), or raw messages (using events()).

Keys and values can be bytes for manual deserialization, or Model instances, and this is decided by the topic’s key_type and value_type arguments.

See also

The easiest way to process streams is to use agents, but you can also create a stream manually from any topic/channel.

Here we define a model for our stream, create a stream from the “withdrawals” topic and iterate over it:

class Withdrawal(faust.Record):
    account: str
    amount: float

async for w in app.topic('withdrawals', value_type=Withdrawal).stream():
    print(w.amount)

Do note that the worker must be started first (or at least the app), for this to work, and the stream iterator needs to be started as an asyncio.Task, so a more practical example is:

import faust

class Withdrawal(faust.Record):
    account: str
    amount: float

app = faust.App('example-app')

withdrawals_topic = app.topic('withdrawals', value_type=Withdrawal)

@app.task
async def mytask():
    async for w in withdrawals_topic.stream():
        print(w.amount)

if __name__ == '__main__':
    app.main()

You may also treat the stream as a stream of bytes values:

async for value in app.topic('messages').stream():
    # the topic description has no value_type, so values
    # are now the raw message value in bytes.
    print(repr(value))
Processors

A stream can have an arbitrary number of processor callbacks that are executed as values go through the stream.

These are normally used in Faust applications, but are useful for libraries that extend the functionality of streams.

A processor takes a value as argument and returns a value:

def add_default_language(value: MyModel) -> MyModel:
    if not value.language:
        value.language = 'US'
    return value

async def add_client_info(value: MyModel) -> MyModel:
    value.client = await get_http_client_info(value.account_id)
    return value

s = app.stream(my_topic,
               processors=[add_default_language, add_client_info])

Note

Processors can be async callable, or normal callable.

Since the processors are stored in an ordered list, the processors above will execute in order and the final value going out of the stream will be the reduction after all processors are applied:

async for value in s:
    # all processors applied here so `value`
    # will be equivalent to doing:
    #   value = add_default_language(add_client_info(value))
Message Life Cycle
Kafka Topics

Every Faust worker instance will start a single Kafka consumer responsible for fetching messages from all subscribed topics.

Every message in the topic have an offset number (where the first message has an offset of zero), and we use a single offset to track the messages that consumers do not want to see again.

The Kafka consumer commits the topic offsets every three seconds in a background task. The default interval is defined by the broker_commit_interval setting.

As we only have one consumer, and multiple agents can subscribe to the same topic, we need a smart way to track when those events have processed so we can commit and advance the consumer group offset.

We use reference counting for this, so when you define an agent that iterates over the topic as a stream:

@app.agent(topic)
async def process(stream):
    async for value in stream:
         print(value)

The act of starting that stream iterator will add the topic to the Conductor service. This internal service is responsible for forwarding messages received by the consumer to the streams:

[Consumer] -> [Conductor] -> [Topic] -> [Stream]

The async for is what triggers this, and the agent code above is roughly equivalent to:

async def custom_agent(app: App, topic: Topic):
     topic_iterator = aiter(topic)
     app.topics.add(topic)  # app.topics is the Conductor
     stream = Stream(topic_iterator, app=app)
     async for value in stream:
         print(value)

If two agents use streams subscribed to the same topic:

topic = app.topic('orders')

 @app.agent(topic)
 async def processA(stream):
      async for value in stream:
          print(f'A: {value}')

 @app.agent(topic)
  async def processB(stream):
       async for value in stream:
           print(f'B: {value}')

The Conductor will forward every message received on the “orders” topic to both of the agents, increasing the reference count whenever it enters an agents stream.

The reference count decreases when the event is acknowledged, and when it reaches zero the consumer will consider that offset as “done” and can commit it.

Acknowledgment

The acknowledgment signifies that the event processing is complete and should not happen again.

An event is automatically acknowledged when:

  • The agent stream advances to a new event (Stream.__anext__)

  • An exception occurs in the agent during event processing.

  • The application shuts down, or a rebalance is required, and the stream finished processing the event.

What this means is that an event is acknowledged when your agent is finished handling it, but you can also manually control when it happens.

To manually control when the event is acknowledged, and its reference count decreased, use await event.ack()

async for event in stream.events():

print(event.value) await event.ack()

You can also use async for on the event:

async for event in stream.events():
    async with event:
        print(event.value)
        # event acked when exiting this block

Note that the conditions in automatic acknowledgment still apply when manually acknowledging a message.

Combining streams

Streams can be combined, so that you receive values from multiple streams in the same iteration:

>>> s1 = app.stream(topic1)
>>> s2 = app.stream(topic2)
>>> async for value in (s1 & s2):
...     ...

Mostly this is useful when you have two topics having the same value type, but can be used in general.

If you have two streams that you want to process independently you should rather start individual tasks:

@app.agent(topic1)
async def process_stream1(stream):
    async for value in stream:
        ...


@app.agent(topic2)
async def process_stream2(stream):
    async for value in stream:
        ...
Operations
group_by() – Repartition the stream

The Stream.group_by() method repartitions the stream by taking a “key type” as argument:

import faust

class Order(faust.Record):
    account_id: str
    product_id: str
    amount: float
    price: float

app = faust.App('group-by-example')
orders_topic = app.topic('orders', value_type=Order)

@app.agent(orders_topic)
async def process(orders):
    async for order in orders.group_by(Order.account_id):
        ...

In the example above the “key type” is a field descriptor, and the stream will be repartitioned by the account_id field found in the deserialized stream value.

The new stream will be using a new intermediate topic where messages have account ids as key, and this is the stream that the agent will finally be iterating over.

Note

Stream.group_by() returns a new stream subscribing to the intermediate topic of the group by operation.

Apart from field descriptors, the key type argument can also be specified as a callable, or an async callable, so if you’re not using models to describe the data in streams you can manually extract the key used for repartitioning:

def get_order_account_id(order):
    return json.loads(order)['account_id']

@app.agent(app.topic('order'))
async def process(orders):
    async for order in orders.group_by(get_order_account_id):
        ...

See also

items() – Iterate over keys and values

Use Stream.items() to get access to both message key and value at the same time:

@app.agent()
async def process(stream):
    async for key, value in stream.items():
        ...

Note that this changes the type of what you iterate over from Stream to AsyncIterator, so if you want to repartition the stream or similar, .items() need to be the last operation:

async for key, value in stream.through('foo').group_by(M.id).items():
    ...
events() – Access raw messages

Use Stream.events() to iterate over raw Event values, including access to original message payload and message meta data:

@app.agent
async def process(stream):
    async for event in stream.events():
        message = event.message
        topic = event.message.topic
        partition = event.message.partition
        offset = event.message.offset

        key_bytes = event.message.key
        value_bytes = event.message.value

        key_deserialized = event.key
        value_deserialized = event.value

        async with event:  # use  `async with event` for manual ack
            process(event)
            # event will be acked when this block returns.

See also

  • The faust.Event class in the API reference – for more information about events.

  • The faust.types.tuples.Message class in the API reference – for more information about the fields available in event.message.

take() – Buffer up values in the stream

Use Stream.take() to gather up multiple events in the stream before processing them, for example to take 100 values at a time:

@app.agent()
async def process(stream):
    async for values in stream.take(100):
        assert len(values) == 100
        print(f'RECEIVED 100 VALUES: {values}')

The problem with the above code is that it will block forever if there are 99 messages and the last hundredth message is never received.

To solve this add a within timeout so that up to 100 values will be processed within 10 seconds:

@app.agent()
async def process(stream):
    async for values in stream.take(100, within=10):
        print(f'RECEIVED {len(values)}: {values}')

The above code works better: if values are constantly being streamed it will process hundreds and hundreds without delay, but if there are long periods of time with no events received it will still process what it has gathered.

enumerate() – Count values

Use Stream.enumerate() to keep a count of the number of values seen so far in a stream.

This operation works exactly like the Python enumerate() function, but for an asynchronous stream:

@app.agent()
async def process(stream):
    async for i, value in stream.enumerate():
        ...

The count will start at zero by default, but enumerate also accepts an optional starting point argument.

See also

  • The faust.utils.aiter.aenumerate() function – for a general version of enumerate() that let you enumerate any async iterator, not just streams.

  • The enumerate() function in the Python standard library.

through() – Forward through another topic

Use Stream.through() to forward every value to a new topic, and replace the stream by subscribing to the new topic:

source_topic = app.topic('source-topic')
destination_topic = app.topic('destination-topic')

@app.agent()
async def process(stream):
    async for value in stream.through(destination_topic):
        # we are now iterating over stream(destination_topic)
        print(value)

You can also specify the destination topic as a string:

# [...]
async for value in stream.through('foo'):
    ...

Through is especially useful if you need to convert the number of partitions in a source topic, by using an intermediate table.

If you simply want to forward a value to another topic, you can send it manually, or use the echo recipe below:

@app.agent()
async def process(stream):
    async for value in stream:
        await other_topic.send(value)
filter() – Filter values to omit from stream.

New in version 1.7.

This method is useful for filtering events before repartitioning a stream.

Takes a single argument which must be a callable, either a normal function or an async def function.

Example:

@app.agent()
async def process(stream):
    async for value in stream.filter(lambda: v > 1000).group_by(...):
        ...
echo() – Repeat to one or more topics

Use echo() to repeat values received from a stream to another channel/topic, or many other channels/topics:

@app.agent()
async def process(stream):
    async for event in stream.echo('other_topic'):
        ...

The operation takes one or more topics, as string topic names or app.topic, so this also works:

source_topic = app.topic('sourcetopic')
echo_topic1 = app.topic('source-copy-1')
echo_topic2 = app.topic('source-copy-2')

@app.agent(source_topic)
async def process(stream):
    async for event in stream.echo(echo_topic1, echo_topic2):
        ...

See also

Reference

Note

Do not create Stream objects directly, instead use: app.stream to instantiate new streams.

Channels & Topics - Data Sources

Basics

Faust agents iterate over streams, and streams iterate over channels.

A channel is a construct used to send and receive messages, then we have the “topic”, which is a named-channel backed by a Kafka topic.

Streams read from channels (either a local-channel or a topic).

Agent <–> Stream <–> Channel

Topics are named-channels backed by a transport (to use e.g. Kafka topics):

Agent <–> Stream <–> Topic <–> Transport <–> aiokafka

Faust defines these layers of abstraction so that agents can send and receive messages using more than one type of transport.

Topics are highly Kafka specific, while channels are not. That makes channels more natural to subclass should you require a different means of communication, for example using RabbitMQ (AMQP), Stomp, MQTT, NSQ, ZeroMQ, etc.

Channels

A channel is a buffer/queue used to send and receive messages. This buffer could exist in-memory in the local process only, or transmit serialized messages over the network.

You can create channels manually and read/write from them:

async def main():
    channel = app.channel()

    await channel.put(1)

    async for event in channel:
        print(event.value)
        # the channel is infinite so we break after first event
        break
Reference
Sending messages to channel
class faust.Channel[source]
as_future_message(key: Union[bytes, faust.types.core._ModelT, Any, None] = None, value: Union[bytes, faust.types.core._ModelT, Any] = None, partition: int = None, timestamp: float = None, headers: Union[List[Tuple[str, bytes]], Mapping[str, bytes]] = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, callback: Callable[faust.types.tuples.FutureMessage, Union[None, Awaitable[None]]] = None) → faust.types.tuples.FutureMessage[source]

Create promise that message will be transmitted.

Return type

FutureMessage[]

Declaring

Note

Some channels may require you to declare them on the server side before they’re used. Faust will create topics considered internal but will not create or modify “source topics” (i.e., exposed for use by other Kafka applications).

To define a topic as internal use app.topic('name', ..., internal=True).

class faust.Channel[source]
coroutine maybe_declare()[source]

Declare/create this channel, but only if it doesn’t exist.

Return type

None

Topics

A topic is a named channel, backed by a Kafka topic. The name is used as the address of the channel, to share it between multiple processes and each process will receive a partition of the topic.

Models, Serialization, and Codecs

Basics

Models describe the fields of data structures used as keys and values in messages. They’re defined using a NamedTuple-like syntax:

class Point(Record, serializer='json'):
    x: int
    y: int

Here we define a “Point” record having x, and y fields of type int.

A record is a model of the dictionary type, having keys and values of a certain type.

When using JSON as the serialization format, the Point model serializes to:

>>> Point(x=10, y=100).dumps()
{"x": 10, "y": 100}

To temporarily use a different serializer, provide that as an argument to .dumps:

>>> Point(x=10, y=100).dumps('pickle')  # pickle + Base64
b'gAN9cQAoWAEAAAB4cQFLClgBAAAAeXECS2RYBwAAAF9fZmF1c3RxA31xBFg
CAAAAbnNxBVgOAAAAX19tYWluX18uUG9pbnRxBnN1Lg=='

“Record” is the only type supported, but in the future we also want to have arrays and other data structures.

In use

Models are useful when data needs to be serialized/deserialized, or whenever you just want a quick way to define data.

In Faust we use models to:

  • Describe the data used in streams (topic keys and values).

  • HTTP requests (POST data).

For example here’s a topic where both keys and values are points:

my_topic = faust.topic('mytopic', key_type=Point, value_type=Point)

@app.agent(my_topic)
async def task(events):
    async for event in events:
        print(event)

Warning

Changing the type of a topic is backward incompatible change. You need to restart all Faust instances using the old key/value types.

The best practice is to provide an upgrade path for old instances.

The topic already knows what type is required, so when sending data you just provide the values as-is:

await my_topic.send(key=Point(x=10, y=20), value=Point(x=30, y=10))

Anonymous Agents

An “anonymous” agent does not use a topic description.

Instead the agent will automatically create and manage its own topic under the hood.

To define the key and value type of such an agent just pass them as keyword arguments:

@app.agent(key_type=Point, value_type=Point)
async def my_agent(events):
    async for event in events:
        print(event)

Now instead of having a topic where we can send messages, we can use the agent directly:

await my_agent.send(key=Point(x=10, y=20), value=Point(x=30, y=10))
Manual Serialization

Models are not required to read data from a stream.

To deserialize streams manually, use a topic with bytes values:

topic = app.topic('custom', value_type=bytes)

@app.agent
async def processor(stream):
    async for payload in stream:
        data = json.loads(payload)

To integrate with external systems, Codecs help you support serialization and de-serialization to and from any format. Models describe the form of messages, and codecs explain how they’re serialized, compressed, encoded, and so on.

The default codec is configured by the applications key_serializer and value_serializer arguments:

app = faust.App(key_serializer='json')

Individual models can override the default by specifying a serializer argument when creating the model class:

class MyRecord(Record, serializer='json'):
    ...

Codecs may also be combined to provide multiple encoding and decoding stages, for example serializer='json|binary' will serialize as JSON then use the Base64 encoding to prepare the payload for transmission over textual transports.

See also

  • The Codecs section – for more information about codecs and how to define your own.

Sending/receiving raw values

You don’t have to use models to deserialize events in topics. instead you may omit the key_type/value_type options, and instead use the key_serializer/value_serializer arguments:

# examples/nondescript.py
import faust

app = faust.App('values')
transfers_topic = app.topic('transfers')
large_transfers_topic = app.topic('large_transfers')

@app.agent(transfers_topic)
async def find_large_transfers(transfers):
    async for transfer in transfers:
        if transfer['amount'] > 1000.0:
            await large_transfers_topic.send(value=transfer)

async def send_transfer(account_id, amount):
    await transfers_topic.send(value={
        'account_id': account_id,
        'amount': amount,
    })

The raw serializer will provide you with raw text/bytes (the default is bytes, but use key_type=str to specify text):

transfers_topic = app.topic('transfers', value_serializer='raw')

You may also specify any other supported codec, such as json to use that directly:

transfers_topic = app.topic('transfers', value_serializer='json')
Model Types
Records

A record is a model based on a dictionary/mapping.

Here’s a simple record describing a 2d point, having two required fields:

class Point(faust.Record):
    x: int
    y: int

To create a new point, provide the fields as keyword arguments:

>>> point = Point(x=10, y=20)
>>> point
<Point: x=10, y=20>

If you forget to pass a required field, we throw an error:

>>> point = Point(x=10)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/opt/devel/faust/faust/models/record.py", line 96, in __init__
    self._init_fields(fields)
File "/opt/devel/faust/faust/models/record.py", line 106, in _init_fields
    type(self).__name__, ', '.join(sorted(missing))))
TypeError: Point missing required arguments: y

If you don’t want it to be an error, make it an optional field:

class Point(faust.Record, serializer='json'):
    x: int
    y: int = 0

You may now omit the y field when creating points:

>>> point = Point(x=10)
<Point: x=10 y=0>

Note

The order is important here: all optional fields must be defined after all requred fields.

This is not allowed:

class Point(faust.Record, serializer='json'):
    x: int
    y: int = 0
    z: int

but this works:

class Point(faust.Record, serializer='json')
    x: int
    z: int
    y: int = 0
Fields

Records may have fields of arbitrary types and both standard Python types and user defined classes will work.

Note that field types must support serialization, otherwise we cannot reconstruct the object back to original form.

Fields may refer to other models:

class Account(faust.Record, serializer='json'):
    id: str
    balance: float

class Transfer(faust.Record, serializer='json'):
    account: Account
    amount: float

transfer = Transfer(
    account=Account(id='RBH1235678', balance=13000.0),
    amount=1000.0,
)

The field type is a type annotation, so you can use the mypy type checker to verify arguments passed have the correct type.

We do not perform any type checking at runtime.

Collections

Fields can be collections of another type.

For example a User model may have a list of accounts:

from typing import List
import faust


class User(faust.Record):
    accounts: List[Account]

Not only lists are supported, you can also use dictionaries, sets and others.

Consult this table of supported annotations:

Collection

Recognized Annotations

List

Set

Tuple

  • Tuple[ModelT, ...]

  • Tuple[ModelT, ModelT, str]

Mapping

From this table we can tell that we may have a mapping of username to account:

from typing import Mapping
import faust


class User(faust.Record):
    accounts: Mapping[str, Account]

Faust will then automatically reconstruct the User.accounts field into a mapping of account-ids to Account objects.

Coercion

By default we do not force types, this is for backward compatibility with older Faust application.

This means that a field of type str will happily accept None as value, and any other type.

If you want strict types enable the coerce option:

class X(faust.Record, coerce=True):
    foo: str
    bar: Optional[str]

Here, the foo field will be required to be a string, while the bar field can have None values.

Tip

Having validation=True implies coerce=True but will additionally enable field validation.

See Validation for more information.

Coercion also enables automatic conversion to and from datetime and Decimal.

You may also disable coercion for the class, but enable it for individual fields by writing explicit field descriptors:

import faust
from faust.mdoels.fields import DatetimeField, StringField

class Account(faust.Record):
    user_id: str = StringField(coerce=True)
    date_joined: datetime = DatetimeField(coerce=False)
    login_dates: List[datetime] = DatetimeField(coerce=True)
datetime

When using JSON we automatically convert datetime fields into ISO-8601 text format, and automatically convert back into into datetime when deserializing.

from datetime import datetime
import faust

class Account(faust.Record, coerce=True, serializer='json'):
    date_joined: datetime
Other date formats

The default date parser supports ISO-8601 only. To support this format and many other formats (such as 'Sat Jan 12 00:44:36 +0000 2019') you can select to use python-dateutil as the parser.

To change the date parsing function for a model globally:

from dateutil.parser import parse as parse_date

class Account(faust.Record, coerce=True, date_parser=parse_date):
    date_joined: datetime

To change the date parsing function for a specific field:

from dateutil.parser import parse as parse_date
from faust.models.fields import DatetimeField

class Account(faust.Record, coerce=True):
    # date_joined: supports ISO-8601 only (default)
    date_joined: datetime

    #: date_last_login: comes from weird system with more human
    #: readable dates ('Sat Jan 12 00:44:36 +0000 2019').
    #: The dateutil parser can handle many different date and time
    #: formats.
    date_last_login: datetime = DatetimeField(date_parser=parse_date)
Decimal

JSON doesn’t have a high precision decimal field type so if you require high precision you must use Decimal.

The built-in JSON encoder will convert these to strings in the json payload, that way we do not lose any precision.

from decimal import Decimal
import faust

class Order(faust.Record, coerce=True, serializer='json'):
    price: Decimal
    quantity: Decimal
Abstract Models

To create a model base class with common functionality, mark the model class with abstract=True.

Abstract models must be inherited from, and cannot be instantiated directly.

Here’s an example base class with default fields for creation time and last modified time:

class MyBaseRecord(Record, abstract=True):
    time_created: float = None
    time_modified: float = None

Inherit from this model to create a new model having the fields by default:

class Account(MyBaseRecord):
    id: str

account = Account(id='X', time_created=3124312.3442)
print(account.time_created)
Positional Arguments

The best practice when creating model instances is to use keyword arguments, but positional arguments are also supported!

The point Point(x=10, y=30) may also be expressed as Point(10, 30).

Back to why this is not a good practice, consider the case of inheritance:

import faust

class Point(faust.Record):
    x: int
    y: int

class XYZPoint(Point):
    z: int

point = XYZPoint(10, 20, 30)
assert (point.x, point.y, point.z) == (10, 20, 30)

To deduce the order arguments we now have to consider the inheritance tree, this is difficult without looking up the source code.

This quickly turns even more complicated when we add multiple inheritance into the mix:

class Point(AModel, BModel):
    ...

We suggest using positional arguments only for simple classes such as the Point example, where inheritance of additional fields is not used.

Polymorphic Fields

Felds can refer to other models, such as an account with a user field:

class User(faust.Record):
    id: str
    first_name: str
    last_name: str

class Account(faust.Record):
    user: User
    balance: Decimal

This is a strict relationship: the value for Account.user can only be an instance of the User type.

Polymorphic fields are also supported, where the type of the field is decided at runtime.

Consider an Article models with a list of assets where the type of asset is decided at runtime:

class Asset(faust.Record):
    url: str
    type: str

class ImageAsset(Asset):
    type = 'image'

class VideoAsset(Asset):
    runtime_seconds: float
    type = 'video'

class Article(faust.Record, polymorphic_fields=True):
    assets: List[Asset]

How does this work? Faust models add additional metadata when serialized, just look at the payload for one of our accounts:

>>> user = User(
...    id='07ecaebf-48c4-4c9e-92ad-d16d2f4a9a19',
...    first_name='Franz',
...    last_name='Kafka',
... )
>>> account = Account(
...    user=user,
...    balance='12.3',
)
>>> from pprint import pprint
>>> pprint(account.to_representation())
{
    '__faust': {'ns': 't.Account'},
    'balance': Decimal('12.3'),
    'user': {
        '__faust': {'ns': 't.User'},
        'first_name': 'Franz',
        'id': '07ecaebf-48c4-4c9e-92ad-d16d2f4a9a19',
        'last_name': 'Kafka',
    },
}

Here the metadata section is the __faust field, and it contains the name of the model that generated this payload.

By default we don’t use this name for anything at all, but we do if polymorphic fields are enabled.

Why is it disabled by default? There is often a mismatch between the name of the class used to produce the event, and the class we want to reconstruct it as.

Imagine a producer is using an outdated version, or model cannot be shared between systems (this happens when using different programming languages, integrating with proprietary systems, and so on.)

The namespace ns contains the fully qualified name of the model class (in this example t.User).

Faust will keep an index of model names, and whenever you define a new model class we add it to this index.

Note

If you’re trying to deserialize a model but it complains that it does not exist, you probably forgot to import this model before using it.

For the same reason you should not be renaming classes without having a strategy to do so in a forward compatible manner.

Validation

For models there is no validation of data by default: if you have a field described as an int, it will happily accept a string or any other object that you pass to it:

>>> class Person(faust.Record):
...    age: int
...

>>> p = Person(age="foo")
>>> p.age
"foo"

However, there is an option that will enable validation for all common JSON fields (int, float, str, etc.), and some commonly used Python ones (datetime, Decimal, etc.)

>>> class Person(faust.Record, validation=True):
...     age: int

>>> p = Person(age="foo")
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  ValidationError: Invalid type for int field 'age': 'foo' (str)

For things like web forms raising an error automatically is not a good solution, as the client will usually want a list of all errors.

So in web views we suggest disabling automatic validation, and instead manually validating the model by calling model.validate(). to get a list of ValidationError instances.

>>> class Person(faust.Record):
...     age: int
...     name: str

>>> p = Person(age="Gordon Gekko", name="32")
>>> p.validate()
[
  ('age': ValidationError(
        "Invalid type for int field 'age': 'Gordon Gekko' (str)"),
  ('name': ValidationError(
        "Invalid type for str field 'name': 32 (int)")),
]
Advanced Validation

If you have a field you want validation for, you may explicitly define the field descriptor for the field you want validation on (note: this will override the built-in validation for that field). This will also enable you to access more validation options, such as the maximum number of characters for a string, or a minmum value for an integer:

class Person(faust.Record, validation=True):
    age: int = IntegerField(min_value=18, max_value=99)
    name: str
Custom field types

You may define a custom FieldDescriptor subclass to perform your own validation:

from faust.exceptions import ValidationError
from faust.models import field_type

class ChoiceField(FieldDescriptor[str]):

    def __init__(self, choices: List[str], **kwargs: Any) -> None:
        self.choices = choices
        # Must pass any custom args to init,
        # so we pass the choices keyword argument also here.
        super().__init__(choices=choices, **kwargs)

    def validate(self, value: str) -> Iterable[ValidationError]:
        if value not in self.choices:
            choices = ', '.join(self.choices)
            yield self.validation_error(
                f'{self.field} must be one of {choices}')

After defining the subclass you may use it to define model fields:

>>> class Order(faust.Record):
...    side: str = ChoiceField(['SELL', 'BUY'])

>>> Order(side='LEFT')
faust.exceptions.ValidationError: (
    'side must be one of SELL, BUY', <ChoiceField: Order.side: str>)
Excluding fields from representation

If you want your model to accept a certain field when deserializing, but exclude the same field from serialization, you can do so by marking that field as exclude=True:

import faust
from faust.models.fields import StringField


class Order(faust.Record):
    price: float
    quantity: float
    user_id: str = StringField(required=True, exclude=True)

This model will accept user_id as a keyword argument, and from any serialized structure:

>>> order = Order(price=30.0, quantity=2.0, user_id='foo')
>>> order.user_id
'foo'

>>> order2 = Order.loads(
...     '{"price": "30.0", quantity="2.0", "user_id": "foo"}',
...     serializer='json',
... )

>>> order2.user_id
'foo'

But when serializing the order, the field will be excluded:

>>> order.asdict()
{'price': 30.0, 'quantity': 2.0}

>>> order.dumps(serializer='json')
'{"price": "30.0", "quantity": "2.0"}'
Reference
Serialization/Deserialization
class faust.Record[source]
classmethod loads(s: bytes, *, default_serializer: Union[faust.types.codecs.CodecT, str, None] = None, serializer: Union[faust.types.codecs.CodecT, str, None] = None) → faust.types.models.ModelT

Deserialize model object from bytes.

Keyword Arguments

serializer (CodecArg) – Default serializer to use if no custom serializer was set for this model subclass.

Return type

ModelT

dumps(*, serializer: Union[faust.types.codecs.CodecT, str, None] = None) → bytes

Serialize object to the target serialization format.

Return type

bytes

to_representation() → Mapping[str, Any][source]

Convert model to its Python generic counterpart.

Records will be converted to dictionary.

Return type

Mapping[str, Any]

classmethod from_data(data: Mapping, *, preferred_type: Type[faust.types.models.ModelT] = None) → faust.models.record.Record[source]

Create model object from Python dictionary.

Return type

Record

derive(*objects, **fields) → faust.types.models.ModelT

Derive new model with certain fields changed.

Return type

ModelT

_options

Model metadata for introspection. An instance of faust.types.models.ModelOptions.

class faust.ModelOptions[source]
fields = None

Flattened view of __annotations__ in MRO order.

Type

Index

fieldset = None

Set of required field names, for fast argument checking.

Type

Index

fieldpos = None

Positional argument index to field name. Used by Record.__init__ to map positional arguments to fields.

Type

Index

optionalset = None

Set of optional field names, for fast argument checking.

Type

Index

models = None

Mapping of fields that are ModelT

Type

Index

coercions = None
defaults = None

Mapping of field names to default value.

Codecs
Supported codecs
  • raw - no encoding/serialization (bytes only).

  • json - json with UTF-8 encoding.

  • pickle - pickle with Base64 encoding (not URL-safe).

  • binary - Base64 encoding (not URL-safe).

Encodings are not URL-safe if the encoded payload cannot be embedded directly into a URL query parameter.

Serialization by name

The dumps() function takes a codec name and the object to encode as arguments, and returns bytes

>>> s = dumps('json', obj)

In reverse direction, the loads() function takes a codec name and an encoded payload to decode (in bytes), as arguments, and returns a reconstruction of the serialized object:

>>> obj = loads('json', s)

When passing in the codec type as a string (as in loads('json', ...) above), you can also combine multiple codecs to form a pipeline, for example "json|gzip" combines JSON serialization with gzip compression:

>>> obj = loads('json|gzip', s)
Codec registry

All codecs have a name and the faust.serializers.codecs attribute maintains a mapping from name to Codec instance.

You can add a new codec to this mapping by executing:

>>> from faust.serializers import codecs
>>> codecs.register(custom, custom_serializer())

To create a new codec, you need to define only two methods: first you need the _loads() method to deserialize bytes, then you need the _dumps() method to serialize an object:

import msgpack

from faust.serializers import codecs

class raw_msgpack(codecs.Codec):

    def _dumps(self, obj: Any) -> bytes:
        return msgpack.dumps(obj)

    def _loads(self, s: bytes) -> Any:
        return msgpack.loads(s)

We use msgpack.dumps to serialize, and our codec now encodes to raw msgpack format.

You may also combine the Base64 codec to support transports unable to handle binary data (such as HTTP or Redis):

Combining codecs is done using the | operator:

def msgpack() -> codecs.Codec:
    return raw_msgpack() | codecs.binary()

codecs.register('msgpack', msgpack())
>>> import my_msgpack_codec

>>> from faust import Record
>>> class Point(Record, serializer='msgpack'):
...     x: int
...     y: int

At this point we have to import the codec every time we want to use it, that is very cumbersome.

Faust also supports registering codec extensions using setuptools entry-points, so instead lets create an installable msgpack extension!

Define a package with the following directory layout:

faust-msgpack/
    setup.py
    faust_msgpack.py

The first file (faust-msgpack/setup.py) defines metadata about our package and should look like:

import setuptools

setuptools.setup(
    name='faust-msgpack',
    version='1.0.0',
    description='Faust msgpack serialization support',
    author='Ola A. Normann',
    author_email='ola@normann.no',
    url='http://github.com/example/faust-msgpack',
    platforms=['any'],
    license='BSD',
    packages=find_packages(exclude=['ez_setup', 'tests', 'tests.*']),
    zip_safe=False,
    install_requires=['msgpack-python'],
    tests_require=[],
    entry_points={
        'faust.codecs': [
            'msgpack = faust_msgpack:msgpack',
        ],
    },
)

The most important part here is the entry_points section that tells setuptools how to load our plugin.

We have set the name of our codec to msgpack and the path to the codec class to be faust_msgpack:msgpack.

Faust imports this as it would do from faust_msgpack import msgpack, so we need to define hat part next in our faust-msgpack/faust_msgpack.py module:

from faust.serializers import codecs

class raw_msgpack(codecs.Codec):

    def _dumps(self, obj: Any) -> bytes:
        return msgpack.dumps(s)


def msgpack() -> codecs.Codec:
    return raw_msgpack() | codecs.binary()

That’s it! To install and use our new extension do:

$ python setup.py install

At this point you can publish this to PyPI so it can be shared with other Faust users.

Tables and Windowing

“A man sees in the world what he carries in his heart.”

– Goethe, Faust: First part

Tables
Basics

A table is a distributed in-memory dictionary, backed by a Kafka changelog topic used for persistence and fault-tolerance. We can replay the changelog upon network failure and node restarts, allowing us to rebuild the state of the table as it was before the fault.

To create a table use app.Table:

table = app.Table('totals', default=int)

You cannot modify a table outside of a stream operation; this means that you can only mutate the table from within an async for event in stream: block. We require this to align the table’s partitions with the stream’s, and to ensure the source topic partitions are correctly rebalanced to a different worker upon failure, along with any necessary table partitions.

Modifying a table outside of a stream will raise an error:

totals = app.Table('totals', default=int)

# cannot modify table, as we are not iterating over stream
table['foo'] += 30

This source-topic-event to table-modification-event requirement also ensures that producing to the changelog and committing messages from the source happen simultaneously.

Warning

An abruptly terminated Faust worker can allow some changelog entries to go through, before having committed the source topic offsets.

Duplicate messages may result in double-counting and other data consistency issues, but since version 1.5 of Faust you can enable a setting for strict processing guarantees.

See the processing_guarantee setting for more information.

Co-partitioning Tables and Streams

When managing stream partitions and their corresponding changelog partitions, “co-partitioning” ensures the correct distribution of stateful processing among available clients, but one requirement is that tables and streams must share shards.

To shard the table differently, you must first repartition the stream using group_by.

Repartition a stream:

withdrawals_topic = app.topic('withdrawals', value_type=Withdrawal)

country_to_total = app.Table(
    'country_to_total', default=int).tumbling(10.0, expires=10.0)

withdrawals_stream = app.topic('withdrawals', value_type=Withdrawal).stream()
withdrawals_by_country = withdrawals_stream.group_by(Withdrawal.country)

@app.agent
async def process_withdrawal(withdrawals):
    async for withdrawal in withdrawals.group_by(Withdrawal.country):
        country_to_total[withdrawal.country] += withdrawal.amount

If the stream and table are not co-partitioned, we could end up with a table shard ending up on a different worker than the worker processing its corresponding stream partition.

Warning

For this reason, table changelog topics must have the same number of partitions as the source topic.

Table Sharding

Tables shards in Kafka must organize using a disjoint distribution of keys so that any computation for a subset of keys always happen together in the same worker process.

The following is an example of incorrect usage where subsets of keys are likely to be processed by different worker processes:

withdrawals_topic = app.topic('withdrawals', key_type=str,
                              value_type=Withdrawal)

user_to_total = app.Table('user_to_total', default=int)
country_to_total = app.Table(
    'country_to_total', default=int).tumbling(10.0, expires=10.0)


@app.agent(withdrawals_topic)
async def process_withdrawal(withdrawals):
    async for withdrawal in withdrawals:
        user_to_total[withdrawal.user] += withdrawal.amount
        country_to_total[withdrawal.country] += withdrawal.amount

Here the stream withdrawals is (implicitly) partitioned by the user ID used as message key. So the country_to_total table, instead of being partitioned by country name, is partitioned by the user ID. In practice, this means that data for a country may reside on multiple partitions, and worker instances end up with incomplete data.

To fix that rewrite your program like this, using two distinct agents and repartition the stream by country when populating the table:

withdrawals_topic = app.topic('withdrawals', value_type=Withdrawal)

user_to_total = app.Table('user_to_total', default=int)
country_to_total = app.Table(
    'country_to_total', default=int).tumbling(10.0, expires=10.0)


@app.agent(withdrawals_topic)
async def find_large_user_withdrawals(withdrawals):
    async for withdrawal in withdrawals:
        user_to_total[withdrawal.user] += withdrawal.amount


@app.agent(withdrawals_topic)
async def find_large_country_withdrawals(withdrawals):
    async for withdrawal in withdrawals.group_by(Withdrawal.country):
        country_to_total[withdrawal.country] += withdrawal.amount
The Changelog

Every modification to a table has a corresponding changelog update, the changelog is used to recover data after a failure.

We store the changelog in Kafka as a topic and use log compaction to only keep the most recent value for a key in the log. Kafka periodically compacts the table, to ensure the log does not grow beyond the number of keys in the table.

Note

In production the RocksDB store allows for almost instantaneous recovery of tables: a worker only needs to retrieve updates missed since last time the instance was up.

If you change the value for a key in the table, please make sure you update the table with the new value after:

In order to publish a changelog message into Kafka for fault-tolerance the table needs to be set explicitly. Hence, while changing values in Tables by reference, we still need to explicitly set the value to publish to the changelog, as shown below:

user_withdrawals = app.Table('user_withdrawals', default=list)
topic = app.topic('withdrawals', value_type=Withdrawal)

async for event in topic.stream():
    # get value for key in table
    withdrawals = user_withdrawals[event.account]
    # modify the value
    withdrawals.append(event.amount)
    # write it back to the table (also updating changelog):
    user_withdrawals[event.account] = withdrawals

If you forget to do so, like in the following example, the program will work but will have inconsistent data if a recovery is needed for any reason:

user_withdrawals = app.Table('user_withdrawals', default=list)
topic = app.topic('withdrawals', value_type=Withdrawal)

async for event in topic.stream():
    withdrawals = user_withdrawals[event.account]
    withdrawals.append(event.amount)
    # OOPS! Did not update the table with the new value

Due to this changelog, both table keys and values must be serializable.

See also

Note

Faust creates an internal changelog topic for each table. The Faust application should be the only client producing to the changelog topics.

Windowing

Windowing allows us to process streams while preserving state over defined windows of time. A windowed table preserves key-value pairs according to the configured “Windowing Policy.”

We support the following policies:

class TumblingWindow

This class creates fixed-sized, non-overlapping and contiguous time intervals to preserve key-value pairs, e.g. Tumbling(10) will create non-overlapping 10 seconds windows:

window 1: ----------
window 2:           ----------
window 3:                     ----------
window 4:                               ----------
window 5:                                         ----------

This class is exposed as a method from the output of app.Table(), it takes a mandatory parameter size, representing the window (time interval) duration and an optional parameter expires, representing the duration for which we want to store the data (key-value pairs) allocated to each window.

class HoppingWindow

This class creates fixed-sized, overlapping time intervals to preserve key-value pairs, e.g. Hopping(10, 5) will create overlapping 10 seconds windows. Each window will be created every 5 seconds.

window 1: ----------
window 2:      ----------
window 3:           ----------
window 4:                ----------
window 5:                     ----------
window 6:                          ----------

This class is exposed as a method from the output of app.Table(), it takes 2 mandatory parameters:

  • size, representing the window (time interval) duration.

  • step, representing the time interval used to create new windows.

It also takes an optional parameter expires, representing the duration for which we want to store the data (key-value pairs) allocated to each window.

How To

You can define a windowed table like this:

from datetime import timedelta
views = app.Table('views', default=int).tumbling(
    timedelta(minutes=1),
    expires=timedelta(hours=1),
)

Since a key can exist in multiple windows, the windowed table returns a special wrapper for table[k], called a WindowSet.

Here’s an example of a windowed table in use:

page_views_topic = app.topic('page_views', value_type=str)

@app.agent(events_topic)
async def aggregate_page_views(pages):
    # values in this streams are URLs as strings.
    async for page_url in pages:

        # increment one to all windows this page URL fall into.
        views[page_url] += 1

        if views[page_url].now() >= 10000:
            # Page is trending for current processing time window
            print('Trending now')

        if views[page_url].current() >= 10000:
            # Page would be trending in the current event's time window
            print('Trending when event happened')

        if views[page_url].value() >= 10000:
            # Page would be trending in the current event's time window
            # according to the relative time set when creating the
            # table.
            print('Trending when event happened')

        if views[page_url].delta(timedelta(minutes=30)) > views[page_url].now():
            print('Less popular compared to 30 minutes back')

In this table, table[k].now() returns the most recent value for the current processing window, overriding the _relative_to_ option used to create the window.

In this table, table[k].current() returns the most recent value relative to the time of the currently processing event, overriding the _relative_to_ option used to create the window.

In this table, table[k].value() returns the most recent value relative to the time of the currently processing event, and is the default behavior.

You can also make the current value relative to the current local time, relative to a different field in the event (if it has a custom timestamp field), or of another event.

The default behavior is “relative to current stream”:

views = app.Table('views', default=int).tumbling(...).relative_to_stream()

Where .relative_to_stream() means values are selected based on the window of the current event in the currently processing stream.

You can also use .relative_to_now(): this means the window of the current local time is used instead:

views = app.Table('views', default=int).tumbling(...).relative_to_now()

If the current event has a custom timestamp field that you want to use, relative_to_field(field_descriptor) is suited for that task:

views = app.Table('views', default=int) \
    .tumbling(...) \
    .relative_to_field(Account.date_created)

You can override this default behavior when accessing data in the table:

@app.agent(topic)
async def process(stream):
    async for event in stream:
        # Get latest value for key', based on the tables default
        # relative to option.
        print(table[key].value())

        # You can bypass the default relative to option, and
        # get the value closest to the event timestamp
        print(table[key].current())

        # You can bypass the default relative to option, and
        # get the value closest to the current local time
        print(table[key].now())

        # Or get the value for a delta, e.g. 30 seconds ago, relative
        # to the event timestamp
        print(table[key].delta(30))

Note

We always retrieve window data based on timestamps. With tumbling windows there is just one window at a time, so for a given timestamp there is just one corresponding window. This is not the case for for hopping windows, in which a timestamp could be located in more than 1 window.

At this point, when accessing data from a hopping table, we always access the latest window for a given timestamp and we have no way of modifying this behavior.

Iterating over keys/values/items in a windowed table.

Note

Tables are distributed across workers, so when iterating over table contents you will only see the partitions assigned to the current worker.

Iterating over all the keys in a table will require you to visit all workers, which is highly impractical in a production system.

For this reason table iteration is mostly used in debugging and observing your system.

To iterate over the keys/items/values in windowed table you may add the key_index option to enable support for it:

windowed_table = app.Table(
    'name',
    default=int,
).hopping(10, 5, expires=timedelta(minutes=10), key_index=True)

Adding the key index means we keep a second table as an index of the keys present in the table. Whenever a new key is added we add the key to the key index, similarly whenever a key is deleted we also delete it from the index.

This enables fast iteration over the keys, items and values in the windowed table, with the caveat that those keys may not exist in all windows.

The table iterator views (.keys()/.items()/.values()) will be time-relative to the stream by default, unless you have changed the time-relativity using the .relative_to_now or relative_to_timestamp modifiers:

# Show keys present relative to time of current event in stream:
print(list(windowed_table.keys()))

# Show items present relative to time of current event in stream:
print(list(windowed_table.items()))

# Show values present relative to time of current event in stream:
print(list(windowed_table.values()))

You can also manually specify the time-relativity:

# Change time-relativity to current wall-clock time,
# and show a list of items present in that window.
print(list(windowed_table.relative_to_now().items()))

# Get items present 30 seconds ago:
print(list(windowed_table.relative_to_now().items().delta(30.0)))
“Out of Order” Events

Kafka maintains the order of messages published to it, but when using custom timestamp fields, relative ordering is not guaranteed.

For example, a producer can lose network connectivity while sending a batch of messages and be forced to retry sending them later, then messages in the topic won’t be in timestamp order.

Windowed tables in Faust correctly handles such “out of order ” events, at least until the message is as old as the table expiry configuration.

Note

We handle out of order events by storing separate aggregates for each window in the last expires seconds. The space complexity for this is O(w * K) where w is the number of windows in the last expires seconds and K is the number of keys in the table.

Table Serialization

A table is a mapping with keys and values, serialized using JSON by default.

If you want to use a different serialization mechanism you must configure that using the key_serializer and value_serializer arguments:

table = app.Table(
    'name',
    key_serializer='pickle',
    value_serializer='pickle',
)

Tasks, Timers, Cron Jobs, Web Views, and CLI Commands

Tasks

Your application will have agents that process events in streams, but can also start asyncio.Task-s that do other things, like periodic timers, views for the embedded web server, or additional command-line commands.

Decorating an async function with the @app.task decorator will tell the worker to start that function as soon as the worker is fully operational:

@app.task
async def on_started():
    print('APP STARTED')

If you add the above to the module that defines your app and start the worker, you should see the message printed in the output of the worker.

A task is a one-off task; if you want to do something at periodic intervals, you can use a timer.

Timers

A timer is a task that executes every n seconds:

@app.timer(interval=60.0)
async def every_minute():
    print('WAKE UP')

After starting the worker, and it’s operational, the above timer will print something every minute.

Cron Jobs

A Cron job is a task that executes according to a Crontab format, usually at fixed times:

@app.crontab('0 20 * * *')
async def every_dat_at_8_pm():
    print('WAKE UP ONCE A DAY')

After starting the worker, and it’s operational, the above Cron job will print something every day at 8pm.

crontab takes 1 mandatory argument cron_format and 2 optional arguments:

  • tz, represents the timezone. Defaults to None which gives behaves as UTC.

  • on_leader, boolean defaults to False, only run on leader?

@app.crontab('0 20 * * *', tz=pytz.timezone('US/Pacific'), on_leader=True)
async def every_dat_at_8_pm_pacific():
    print('WAKE UP AT 8:00pm PACIFIC TIME ONLY ON THE LEADER WORKER')
Web Views

The Faust worker will also expose a web server on every instance, that by default runs on port 6066. You can access this in your web browser after starting a worker instance on your local machine:

$ faust -A myapp worker -l info

Just point your browser to the local port to see statistics about your running instance:

http://localhost:6066

You can define additional views for the web server (called pages). The server will use the aiohttp HTTP server library, but you can also write custom web server drivers.

Add a simple page returning a JSON structure by adding this to your app module:

# this counter exists in-memory only,
# so will be wiped when the worker restarts.
count = [0]

@app.page('/count/')
async def get_count(self, request):
    # update the counter
    count[0] += 1
    # and return it.
    return self.json({
        'count': count[0],
    })

This example view is of limited usefulness. It only provides you with a count of how many times the page is requested, on that particular server, for as long as it’s up, but you can also call actors or access table data in web views.

Restart your Faust worker, and you can visit your new page at:

http://localhost:6066/count/

Your workers may have an arbitrary number of views, and it’s up to you what they provide. Just like other web applications they can communicate with Redis, SQL databases, and so on. Anything you want, really, and it’s executing in an asynchronous event loop.

You can decide to develop your web app directly in the Faust workers, or you may choose to keep your regular web server separate from your Faust workers.

You can create complex systems quickly, just by putting everything in a single Faust app.

HTTP Verbs: GET/POST/PUT/DELETE

Specify a faust.web.View class when you need to handle HTTP verbs other than GET:

from faust.web import Request, Response, View

@app.page('/count/')
class counter(View):

    count: int = 0

    async def get(self, request: Request) -> Response
        return self.json({'count': self.count})

    async def post(self, request: Request) -> Response:
        n: int = request.query['n']
        self.count += 1
        return self.json({'count': self.count})

    async def delete(self, request: Request) -> Response:
        self.count = 0
Exposing Tables

A frequent requirement is the ability to expose table values in a web view, and while this is likely to be built-in to Faust in the future, you will have to implement this manually for now.

Tables are partitioned by key, and data for any specific key will exist on a particular worker instance. You can use the @app.table_route decorator to reroute the request to the worker holding that partition.

We define our table, and an agent reading from the stream to populate the table:

import faust

app = faust.App(
    'word-counts',
    broker='kafka://localhost:9092',
    store='rocksdb://',
    topic_partitions=8,
)

posts_topic = app.topic('posts', value_type=str)
word_counts = app.Table('word_counts', default=int,
                        help='Keep count of words (str to int).')


class Word(faust.Record):
    word: str

@app.agent(posts_topic)
async def shuffle_words(posts):
    async for post in posts:
        for word in post.split():
            await count_words.send(key=word, value=Word(word=word))

@app.agent()
async def count_words(words):
    """Count words from blog post article body."""
    async for word in words:
        word_counts[word.word] += 1

After that we define the view, using the @app.table_route decorator to reroute the request to the correct worker instance:

@app.page('/count/{word}/')
@app.table_route(table=word_counts, match_info='word')
async def get_count(web, request, word):
    return web.json({
        word: word_counts[word],
    })

In the above example we used part of the URL to find the given word, but you may also want to get this from query parameters.

Table route based on key in query parameter:

@app.page('/count/')
@app.table_route(table=word_counts, query_param='word')
async def get_count(web, request):
    word = request.query['word']
    return web.json({
        word: word_counts[word],
    })
CLI Commands

As you may already know, you can make your project into an executable, that can start Faust workers, list agents, models and more, just by calling app.main().

Even if you don’t do that, the faust program is always available and you can point it to any app:

$ faust -A myapp worker -l info

The myapp argument should point to a Python module/package having an app attribute. If the attribute has a different name, please specify a fully qualified path:

$ faust -A myproj.apps:faust_app worker -l info

Do --help to get a list of subcommands supported by the app:

$ faust -A myapp --help

To turn your script into the faust command, with the -A option already set, add this to the end of the module:

if __name__ == '__main__':
    app.main()

If saved as simple.py you can now execute it as if it was the faust program:

$ python simple.py worker -l info
Custom CLI Commands

To add a custom command to your app, see the examples/simple.py example in the Faust distribution, where we added a produce command used to send example data into the stream processors:

from faust.cli import option

# the full example is in examples/simple.py in the Faust distribution.
# this only shows the command part of this code.

@app.command(
    option('--max-latency',
           type=float, default=PRODUCE_LATENCY,
           help='Add delay of (at most) n seconds between publishing.'),
    option('--max-messages',
           type=int, default=None,
           help='Send at most N messages or 0 for infinity.'),
)
async def produce(self, max_latency: float, max_messages: int):
    """Produce example Withdrawal events."""
    num_countries = 5
    countries = [f'country_{i}' for i in range(num_countries)]
    country_dist = [0.9] + ([0.10 / num_countries] * (num_countries - 1))
    num_users = 500
    users = [f'user_{i}' for i in range(num_users)]
    self.say('Done setting up. SENDING!')
    for i in range(max_messages) if max_messages is not None else count():
        withdrawal = Withdrawal(
            user=random.choice(users),
            amount=random.uniform(0, 25_000),
            country=random.choices(countries, country_dist)[0],
            date=datetime.utcnow().replace(tzinfo=timezone.utc),
        )
        await withdrawals_topic.send(key=withdrawal.user, value=withdrawal)
        if not i % 10000:
            self.say(f'+SEND {i}')
        if max_latency:
            await asyncio.sleep(random.uniform(0, max_latency))

The @app.command decorator accepts both click.option and click.argument, so you can specify command-line options, as well as command-line positional arguments.

Daemon Commands

The daemon flag can be set to mark the command as a background service that won’t exit until the user hits Control-c, or the process is terminated by another signal:

@app.command(
    option('--foo', type=float, default=1.33),
    daemon=True,
)
async def my_daemon(self, foo: float):
    print('STARTING DAEMON')
    ...
    # set up some stuff
    # we can return here but the program will not shut down
    # until the user hits :kbd:`Control-c`, or the process is terminated
    # by signal
    return

Command-line Interface

Program: faust

The faust umbrella command hosts all command-line functionality for Faust. Projects may add custom commands using the @app.command decorator (see CLI Commands).

Options:

-A, --app

Path of Faust application to use, or the name of a module.

--quiet, --no-quiet, -q

Silence output to <stdout>/<stderr>.

--debug, --no-debug

Enable debugging output, and the blocking detector.

--workdir, -W

Working directory to change to after start.

--datadir

Directory to keep application state.

--json

Return output in machine-readable JSON format.

--loop, -L

Event loop implementation to use: aio (default), gevent, uvloop.

Why is examples/word_count.py used as the program?

The convention for Faust projects is to define an entry point for the Faust command using app.main() - see app.main() – Start the faust command-line program. to see how to do so.

For a standalone program such as examples/word_count.py this is accomplished by adding the following at the end of the file:

if __name__ == '__main__':
    app.main()

For a project organized in modules (a package) you can add a package/__main__.py module:

# package/__main__.py
from package.app import app
app.main()

Or use setuptools entry points so that pip install myproj installs a command-line program.

Even if you don’t add an entry point you can always use the faust program by specifying the path to an app.

Either the name of a module having an app attribute:

$ faust -A examples.word_count

or specifying the attribute directly:

$ faust -A examples.word_count:app
faust --version - Show version information and exit.

Example:

$ python examples/word_count.py --version
word_count.py, version Faust 0.9.39
faust --help - Show help and exit.

Example:

$ python examples/word_count.py --help
Usage: word_count.py [OPTIONS] COMMAND [ARGS]...

Faust command-line interface.

Options:
-L, --loop [aio|gevent|eventlet|uvloop]
                                Event loop implementation to use.
--json / --no-json              Prefer data to be emitted in json format.
-D, --datadir DIRECTORY         Directory to keep application state.
-W, --workdir DIRECTORY         Working directory to change to after start.
--no-color / --color            Enable colors in output.
--debug / --no-debug            Enable debugging output, and the blocking
                                detector.
-q, --quiet / --no-quiet        Silence output to <stdout>/<stderr>.
-A, --app TEXT                  Path of Faust application to use, or the
                                name of a module.
--version                       Show the version and exit.
--help                          Show this message and exit.

Commands:
agents  List agents.
model   Show model detail.
models  List all available models as tabulated list.
reset   Delete local table state.
send    Send message to agent/topic.
tables  List available tables.
worker  Start ƒaust worker instance.
faust agents - List agents defined in this application.

Example:

$ python examples/word_count.py agents
┌Agents──────────┬─────────────────────────────────────────────┬──────────────────────────────────────────┐
│ name           │ topic                                       │ help                                     │
├────────────────┼─────────────────────────────────────────────┼──────────────────────────────────────────┤
│ @count_words   │ word-counts-examples.word_count.count_words │ Count words from blog post article body. │
│ @shuffle_words │ posts                                       │ <N/A>                                    │
└────────────────┴─────────────────────────────────────────────┴──────────────────────────────────────────┘

JSON Output using --json:

$ python examples/word_count.py --json agents
[{"name": "@count_words",
  "topic": "word-counts-examples.word_count.count_words",
  "help": "Count words from blog post article body."},
 {"name": "@shuffle_words",
  "topic": "posts",
  "help": "<N/A>"}]
faust models - List defined serialization models.

Example:

$ python examples/word_count.py models
┌Models┬───────┐
│ name │ help  │
├──────┼───────┤
│ Word │ <N/A> │
└──────┴───────┘

JSON Output using --json:

python examples/word_count.py --json models
[{"name": "Word", "help": "<N/A>"}]
faust model <name> - List model fields by model name.

Example:

$ python examples/word_count.py model Word
┌Word───┬──────┬──────────┐
│ field │ type │ default* │
├───────┼──────┼──────────┤
│ word  │ str  │ *        │
└───────┴──────┴──────────┘

JSON Output using --json:

$ python examples/word_count.py --json model Word
[{"field": "word", "type": "str", "default*": "*"}]
faust reset - Delete local table state.

Warning

This command will result in the destruction of the following files:

  1. The local database directories/files backing tables

    (does not apply if an in-memory store like memory:// is used).

Note

This data is technically recoverable from the Kafka cluster (if intact), but it’ll take a long time to get the data back as you need to consume each changelog topic in total.

It’d be faster to copy the data from any standbys that happen to have the topic partitions you require.

Example:

$ python examples/word_count.py reset
faust send <topic/agent> <message_value> - Send message.

Options:

--key-type, -K

Name of model to serialize key into.

--key-serializer

Override default serializer for key.

--value-type, -V

Name of model to serialize value into.

--value-serializer

Override default serializer for value.

--key, -k

String value for key (use json if model).

--partition

Specific partition to send to.

--repeat, -r

Send message n times.

--min-latency

Minimum delay between sending.

--max-latency

Maximum delay between sending.

Examples:

Send to agent by name using @ prefix:

$ python examples/word_count.py send @word_count "foo"

Send to topic by name (no prefix):

$ python examples/word_count.py send mytopic "foo"
{"topic": "mytopic",
 "partition": 2,
 "topic_partition": ["mytopic", 2],
 "offset": 0,
 "timestamp": 1520974493620,
 "timestamp_type": 0}

To get help:

$ python examples/word_count.py send --help
Usage: word_count.py send [OPTIONS] ENTITY [VALUE]

Send message to agent/topic.

Options:
-K, --key-type TEXT      Name of model to serialize key into.
--key-serializer TEXT    Override default serializer for key.
-V, --value-type TEXT    Name of model to serialize value into.
--value-serializer TEXT  Override default serializer for value.
-k, --key TEXT           String value for key (use json if model).
--partition INTEGER      Specific partition to send to.
-r, --repeat INTEGER     Send message n times.
--min-latency FLOAT      Minimum delay between sending.
--max-latency FLOAT      Maximum delay between sending.
--help                   Show this message and exit.
faust tables - List Tables (distributed K/V stores).

Example:

$ python examples/word_count.py tables
┌Tables───────┬───────────────────────────────────┐
│ name        │ help                              │
├─────────────┼───────────────────────────────────┤
│ word_counts │ Keep count of words (str to int). │
└─────────────┴───────────────────────────────────┘

JSON Output using --json:

$ python examples/word_count.py --json tables
[{"name": "word_counts", "help": "Keep count of words (str to int)."}]
faust worker - Start Faust worker instance.

A “worker” starts a single instance of a Faust application.

Options:

--logfile, -f

Path to logfile (default is <stderr>).

--loglevel, -l

Logging level to use: CRIT|ERROR|WARN|INFO|DEBUG.

--blocking-timeout

Blocking detector timeout (requires –debug).

--without-web

Do not start embedded web server.

--web-host, -h

Canonical host name for the web server.

--web-port, -p

Port to run web server on (default is 6066).

--web-bind, -b

Network mask to bind web server to (default is “0.0.0.0” - all interfaces).

--console-port

When faust --debug is enabled this specifies the port to run the aiomonitor console on (default is 50101).

Examples:

$ python examples/word_count.py worker
┌ƒaµS† v1.0.0──────────────────────────────────────────┐
│ id        │ word-counts                              │
│ transport │ kafka://localhost:9092                   │
│ store     │ rocksdb:                                 │
│ web       │ http://localhost:6066/                   │
│ log       │ -stderr- (warn)                          │
│ pid       │ 46052                                    │
│ hostname  │ grainstate.local                         │
│ platform  │ CPython 3.6.4 (Darwin x86_64)            │
│ drivers   │ aiokafka=0.4.0 aiohttp=3.0.8             │
│ datadir   │ /opt/devel/faust/word-counts-data        │
│ appdir    │ /opt/devel/faust/word-counts-data/v1     │
└───────────┴──────────────────────────────────────────┘
starting➢ 😊

To get more logging use -l info (or further -l debug):

$ python examples/word_count.py worker -l info
┌ƒaµS† v1.0.0──────────────────────────────────────────┐
│ id        │ word-counts                              │
│ transport │ kafka://localhost:9092                   │
│ store     │ rocksdb:                                 │
│ web       │ http://localhost:6066/                   │
│ log       │ -stderr- (info)                          │
│ pid       │ 46034                                    │
│ hostname  │ grainstate.local                         │
│ platform  │ CPython 3.6.4 (Darwin x86_64)            │
│ drivers   │ aiokafka=0.4.0 aiohttp=3.0.8             │
│ datadir   │ /opt/devel/faust/word-counts-data        │
│ appdir    │ /opt/devel/faust/word-counts-data/v1     │
└───────────┴──────────────────────────────────────────┘
starting^[2018-03-13 13:41:39,269: INFO]: [^Worker]: Starting...
[2018-03-13 13:41:39,275: INFO]: [^-App]: Starting...
[2018-03-13 13:41:39,271: INFO]: [^--Web]: Starting...
[2018-03-13 13:41:39,272: INFO]: [^---ServerThread]: Starting...
[2018-03-13 13:41:39,273: INFO]: [^--Web]: Serving on http://localhost:6066/
[2018-03-13 13:41:39,275: INFO]: [^--Monitor]: Starting...
[2018-03-13 13:41:39,275: INFO]: [^--Producer]: Starting...
[2018-03-13 13:41:39,317: INFO]: [^--Consumer]: Starting...
[2018-03-13 13:41:39,325: INFO]: [^--LeaderAssignor]: Starting...
[2018-03-13 13:41:39,325: INFO]: [^--Producer]: Creating topic word-counts-__assignor-__leader
[2018-03-13 13:41:39,325: INFO]: [^--Producer]: Nodes: [0]
[2018-03-13 13:41:39,668: INFO]: [^--Producer]: Topic word-counts-__assignor-__leader created.
[2018-03-13 13:41:39,669: INFO]: [^--ReplyConsumer]: Starting...
[2018-03-13 13:41:39,669: INFO]: [^--Agent]: Starting...
[2018-03-13 13:41:39,673: INFO]: [^---OneForOneSupervisor]: Starting...
[2018-03-13 13:41:39,673: INFO]: [^---Agent*: examples.word_co[.]shuffle_words]: Starting...
[2018-03-13 13:41:39,673: INFO]: [^--Agent]: Starting...
[2018-03-13 13:41:39,674: INFO]: [^---OneForOneSupervisor]: Starting...
[2018-03-13 13:41:39,674: INFO]: [^---Agent*: examples.word_count.count_words]: Starting...
[2018-03-13 13:41:39,674: INFO]: [^--Conductor]: Starting...
[2018-03-13 13:41:39,674: INFO]: [^--TableManager]: Starting...
[2018-03-13 13:41:39,675: INFO]: [^--Stream: <(*)Topic: posts@0x10497e5f8>]: Starting...
[2018-03-13 13:41:39,675: INFO]: [^--Stream: <(*)Topic: wo...s@0x105f73b38>]: Starting...
[...]

To get help use faust worker --help:

$ python examples/word_count.py worker --help
Usage: word_count.py worker [OPTIONS]

Start ƒaust worker instance.

Options:
-f, --logfile PATH              Path to logfile (default is <stderr>).
-l, --loglevel [crit|error|warn|info|debug]
                                Logging level to use.
--blocking-timeout FLOAT        Blocking detector timeout (requires
                                --debug).
-p, --web-port RANGE[1-65535]   Port to run web server on.
-b, --web-bind TEXT
-h, --web-host TEXT             Canonical host name for the web server.
--console-port RANGE[1-65535]   (when --debug:) Port to run debugger console
                                on.
--help                          Show this message and exit.

Sensors - Monitors and Statistics

Basics

Sensors record information about events occurring in a Faust application as they happen.

There’s a default sensor called “the monitor” that record the runtime of messages and events as they go through the worker, the latency of publishing messages, the latency of committing Kafka offsets, and so on.

The web server uses this monitor to present graphs and statistics about your instance, and there’s also a versions of the monitor available that forwards statistics to StatsD, and Datadog.

You can define custom sensors to record the information that you care about, and enable them in the worker.

Monitor

The faust.Monitor is a built-in sensor that captures information like:

  • Average message processing time (when all agents have processed a message).

  • Average event processing time (from an event received by an agent to the event is acked.)

  • The total number of events processed every second.

  • The total number of events processed every second listed by topic.

  • The total number of events processed every second listed by agent.

  • The total number of records written to tables.

  • Duration of Kafka topic commit operations (latency).

  • Duration of producing messages (latency).

You can access the state of the monitor, while the worker is running, in app.monitor:

@app.agent(app.topic('topic'))
def mytask(events):
    async for event in events:
        # emit how many events are being processed every second.
        print(app.monitor.events_s)
Monitor API Reference
Class: Monitor
Monitor Attributes
class faust.Monitor[source]
messages_active

Number of messages currently being processed.

messages_received_total

Number of messages processed in total.

messages_received_by_topic

Count of messages received by topic

messages_s

Number of messages being processed this second.

events_active

Number of events currently being processed.

events_total

Number of events processed in total.

events_s

Number of events being processed this second.

events_by_stream

Count of events processed by stream

events_by_task

Count of events processed by task

events_runtime

Deque of run times used for averages

events_runtime_avg

Average event runtime over the last second.

tables

Mapping of tables

commit_latency

Deque of commit latency values

send_latency

Deque of send latency values

messages_sent

Number of messages sent in total.

send_errors

Number of produce operations that ended in error.

messages_sent_by_topic

Number of messages sent by topic.

topic_buffer_full

Counter of times a topics buffer was full

metric_counts

Arbitrary counts added by apps

tp_committed_offsets

Last committed offsets by TopicPartition

tp_read_offsets

Last read offsets by TopicPartition

tp_end_offsets

Log end offsets by TopicPartition

assignment_latency

Deque of assignment latency values.

assignments_completed

Number of partition assignments completed.

assignments_failed

Number of partitions assignments that failed.

rebalances

Number of rebalances seen by this worker.

rebalance_return_latency

Deque of previous n rebalance return latencies.

rebalance_end_latency

Deque of previous n rebalance end latencies.

rebalance_return_avg

Average rebalance return latency.

rebalance_end_avg

Average rebalance end latency.

Configuration Attributes
class faust.Monitor[source]
max_avg_history = 100

Max number of total run time values to keep to build average.

max_commit_latency_history = 30

Max number of commit latency numbers to keep.

max_send_latency_history = 30

Max number of send latency numbers to keep.

Class: TableState
class faust.sensors.TableState
TableState.table = None
TableState.keys_retrieved = 0

Number of times a key has been retrieved from this table.

TableState.keys_updated = 0

Number of times a key has been created/changed in this table.

TableState.keys_deleted = 0

Number of times a key has been deleted from this table.

Sensor API Reference

This reference describes the sensor interface and is useful when you want to build custom sensors.

Methods
Message Callbacks
class faust.Sensor[source]
on_message_in(tp: faust.types.tuples.TP, offset: int, message: faust.types.tuples.Message) → None[source]

Message received by a consumer.

Return type

None

on_message_out(tp: faust.types.tuples.TP, offset: int, message: faust.types.tuples.Message) → None[source]

All streams finished processing message.

Return type

None

Event Callbacks
class faust.Sensor[source]
on_stream_event_in(tp: faust.types.tuples.TP, offset: int, stream: faust.types.streams.StreamT, event: faust.types.events.EventT) → Optional[Dict][source]

Message sent to a stream as an event.

Return type

Optional[Dict[~KT, ~VT]]

on_stream_event_out(tp: faust.types.tuples.TP, offset: int, stream: faust.types.streams.StreamT, event: faust.types.events.EventT, state: Dict = None) → None[source]

Event was acknowledged by stream.

Notes

Acknowledged means a stream finished processing the event, but given that multiple streams may be handling the same event, the message cannot be committed before all streams have processed it. When all streams have acknowledged the event, it will go through on_message_out() just before offsets are committed.

Return type

None

Table Callbacks
class faust.Sensor[source]
on_table_get(table: faust.types.tables.CollectionT, key: Any) → None[source]

Key retrieved from table.

Return type

None

on_table_set(table: faust.types.tables.CollectionT, key: Any, value: Any) → None[source]

Value set for key in table.

Return type

None

on_table_del(table: faust.types.tables.CollectionT, key: Any) → None[source]

Key deleted from table.

Return type

None

Consumer Callbacks
class faust.Sensor[source]
on_commit_initiated(consumer: faust.types.transports.ConsumerT) → Any[source]

Consumer is about to commit topic offset.

Return type

Any

on_commit_completed(consumer: faust.types.transports.ConsumerT, state: Any) → None[source]

Consumer finished committing topic offset.

Return type

None

on_topic_buffer_full(topic: faust.types.topics.TopicT) → None[source]

Topic buffer full so conductor had to wait.

Return type

None

on_assignment_start(assignor: faust.types.assignor.PartitionAssignorT) → Dict[source]

Partition assignor is starting to assign partitions.

Return type

Dict[~KT, ~VT]

on_assignment_error(assignor: faust.types.assignor.PartitionAssignorT, state: Dict, exc: BaseException) → None[source]

Partition assignor did not complete assignor due to error.

Return type

None

on_assignment_completed(assignor: faust.types.assignor.PartitionAssignorT, state: Dict) → None[source]

Partition assignor completed assignment.

Return type

None

on_rebalance_start(app: faust.types.app.AppT) → Dict[source]

Cluster rebalance in progress.

Return type

Dict[~KT, ~VT]

on_rebalance_return(app: faust.types.app.AppT, state: Dict) → None[source]

Consumer replied assignment is done to broker.

Return type

None

on_rebalance_end(app: faust.types.app.AppT, state: Dict) → None[source]

Cluster rebalance fully completed (including recovery).

Return type

None

Producer Callbacks
class faust.Sensor[source]
on_send_initiated(producer: faust.types.transports.ProducerT, topic: str, message: faust.types.tuples.PendingMessage, keysize: int, valsize: int) → Any[source]

About to send a message.

Return type

Any

on_send_completed(producer: faust.types.transports.ProducerT, state: Any, metadata: faust.types.tuples.RecordMetadata) → None[source]

Message successfully sent.

Return type

None

on_send_error(producer: faust.types.transports.ProducerT, exc: BaseException, state: Any) → None[source]

Error while sending message.

Return type

None

Testing

Basics

To test an agent when unit testing or functional testing, use the special Agent.test() mode to send items to the stream while processing it locally:

app = faust.App('test-example')

class Order(faust.Record, serializer='json'):
    account_id: str
    product_id: str
    amount: int
    price: float

orders_topic = app.topic('orders', value_type=Order)
orders_for_account = app.Table('order-count-by-account', default=int)

@app.agent(orders_topic)
async def order(orders):
    async for order in orders.group_by(Order.account_id):
        orders_for_account[order.account_id] += 1
        yield order

Our agent reads a stream of orders and keeps a count of them by account id in a distributed table also partitioned by the account id.

To test this agent we use order.test_context():

async def test_order():
    # start and stop the agent in this block
    async with order.test_context() as agent:
        order = Order(account_id='1', product_id='2', amount=1, price=300)
        # sent order to the test agents local channel, and wait
        # the agent to process it.
        await agent.put(order)
        # at this point the agent already updated the table
        assert orders_for_account[order.account_id] == 1
        await agent.put(order)
        assert orders_for_account[order.account_id] == 2

async def run_tests():
    app.conf.store = 'memory://'   # tables must be in-memory
    await test_order()

if __name__ == '__main__':
    import asyncio
    loop = asyncio.get_event_loop()
    loop.run_until_complete(run_tests())

For the rest of this guide we’ll be using pytest and pytest-asyncio for our examples. If you’re using a different testing framework you may have to adapt them a bit to work.

Testing with pytest
Testing that an agent sends to topic/calls another agent.

When unit testing you should mock any dependencies of the agent being tested,

  • If your agent calls another function: mock that function to verify it was called.

  • If your agent sends a message to a topic: mock that topic to verify a message was sent.

  • If your agent calls another agent: mock the other agent to verify it was called.

Here’s an example agent that calls another agent:

import faust

app = faust.App('example-test-agent-call')

@app.agent()
async def foo(stream):
    async for value in stream:
        await bar.send(value)
        yield value

@app.agent()
async def bar(stream):
    async for value in stream:
        yield value + 'YOLO'

To test these two agents you have to test them in isolation of each other: first test foo with bar mocked, then in a different test do bar:

import pytest
from unittest.mock import Mock, patch

from example import app, foo, bar

@pytest.fixture()
def test_app(event_loop):
    """passing in event_loop helps avoid 'attached to a different loop' error"""
    app.finalize()
    app.conf.store = 'memory://'
    app.flow_control.resume()
    return app

@pytest.mark.asyncio()
async def test_foo(test_app):
    with patch(__name__ + '.bar') as mocked_bar:
        mocked_bar.send = mock_coro()
        async with foo.test_context() as agent:
            await agent.put('hey')
            mocked_bar.send.assert_called_with('hey')

def mock_coro(return_value=None, **kwargs):
    """Create mock coroutine function."""
    async def wrapped(*args, **kwargs):
        return return_value
    return Mock(wraps=wrapped, **kwargs)

@pytest.mark.asyncio()
async def test_bar(test_app):
    async with bar.test_context() as agent:
        event = await agent.put('hey')
        assert agent.results[event.message.offset] == 'heyYOLO'

Note

The pytest-asyncio extension must be installed to run these tests. If you don’t have it use pip to install it:

$ pip install -U pytest-asyncio
Testing and windowed tables

If your table is windowed and you want to verify that the value for a key is correctly set, use table[k].current(event) to get the value placed within the window of the current event:

import faust
import pytest

@pytest.mark.asyncio()
async def test_process_order():
    app.conf.store = 'memory://'
    async with process_order.test_context() as agent:
        order = Order(account_id='1', product_id='2', amount=1, price=300)
        event = await agent.put(order)

        # windowed table: we select window relative to the current event
        assert orders_for_account['1'].current(event) == 1

        # in the window 3 hours ago there were no orders:
        assert orders_for_account['1'].delta(3600 * 3, event)


class Order(faust.Record, serializer='json'):
    account_id: str
    product_id: str
    amount: int
    price: float

app = faust.App('test-example')
orders_topic = app.topic('orders', value_type=Order)

# order count within the last hour (window is a 1-hour TumblingWindow).
orders_for_account = app.Table(
    'order-count-by-account', default=int,
).tumbling(3600).relative_to_stream()

@app.agent(orders_topic)
async def process_order(orders):
    async for order in orders.group_by(Order.account_id):
        orders_for_account[order.account_id] += 1
        yield order

LiveCheck: End-to-end test for production/staging.

What is the problem with unit tests? What is difficult about maintaining integration tests? Why testing in production makes sense. Bucket testing, slow deploy of new tests will give confidence of a release. A staging environment is still desirable.

Enables you to:

  • track requests as they travel through your micro service architecture.

  • define contracts that should be met at every step

all by writing a class that looks like a regular unit test.

This is a passive observer, so will be able to detect and complain when subsystems are down. Tests are executed based on probability, so you can run tests for every requests, or for just 30%, 50%, or even 0.1% of your requests.

This is not just for micro service architectures, it’s for any asynchronous system. A monolith sending celery tasks is a good example, you could track and babysit at every step of a work flow to make sure things progress as they should.

Every stage of your production pipeline could be tested for things such as “did the account debt exceed a threshold after this change”, or “did the account earn a lot of credits after this change”.

This means LiveCheck can be used to monitor and alert on anomalies happening in your product, as well as for testing general reliability and the consistency of your distributed system.

Every LiveCheck test case is a stream processor, and so can use tables to store data.

Tutorial

LiveCheck Example.

  1. First start an instance of the stock ordering system in a new terminal:

$ python examples/livecheck.py worker -l info
  1. Then in a new terminal, start a LiveCheck instance for this app

$ python examples/livecheck.py livecheck -l info
  1. Then visit http://localhost:6066/order/init/sell/ in your browser.

    Alternatively you can use the post_order command:

    $ python examples/livecheck.py post_order --side=sell
    

The probability of a test execution happening is 50% so you have to do this at least twice to see activity happening in the LiveCheck instance terminal.

Configuration Reference

Required Settings
id
type

str

A string uniquely identifying the app, shared across all instances such that two app instances with the same id are considered to be in the same “group”.

This parameter is required.

The id and Kafka

When using Kafka, the id is used to generate app-local topics, and names for consumer groups.

Commonly Used Settings
debug
type

bool

default

False

Use in development to expose sensor information endpoint.

Tip

If you want to enable the sensor statistics endpoint in production, without enabling the debug setting, you can do so by adding the following code:

app.web.blueprints.add('/stats/', 'faust.web.apps.stats:blueprint')
broker
type

Union[str, URL, List[URL]]

default

[URL("kafka://localhost:9092")]

Faust needs the URL of a “transport” to send and receive messages.

Currently, the only supported production transport is kafka://. This uses the aiokafka client under the hood, for consuming and producing messages.

You can specify multiple hosts at the same time by separating them using the semi-comma:

kafka://kafka1.example.com:9092;kafka2.example.com:9092

Which in actual code looks like this:

app = faust.App(
    'id',
    broker='kafka://kafka1.example.com:9092;kafka2.example.com:9092',
)

You can also pass a list of URLs:

app = faust.App(
    'id',
    broker=['kafka://kafka1.example.com:9092',
            'kafka://kafka2.example.com:9092'],
)

See also

You can configure the transport used for consuming and producing separately, by setting the broker_consumer and broker_producer settings.

This setting is used as the default.

Available Transports
  • kafka://

    Alias to aiokafka://

  • aiokafka://

    The recommended transport using the aiokafka client.

    Limitations: None

  • confluent://

    Experimental transport using the confluent-kafka client.

    Limitations: Does not do sticky partition assignment (not

    suitable for tables), and do not create any necessary internal topics (you have to create them manually).

broker_credentials

New in version 1.5.

type

CredentialsT

default

None

Specify the authentication mechanism to use when connecting to the broker.

The default is to not use any authentication.

SASL Authentication

You can enable SASL authentication via plain text:

app = faust.App(
    broker_credentials=faust.SASLCredentials(
        username='x',
        password='y',
    ))

Warning

Do not use literal strings when specifying passwords in production, as they can remain visible in stack traces.

Instead the best practice is to get the password from a configuration file, or from the environment:

BROKER_USERNAME = os.environ.get('BROKER_USERNAME')
BROKER_PASSWORD = os.environ.get('BROKER_PASSWORD')

app = faust.App(
    broker_credentials=faust.SASLCredentials(
        username=BROKER_USERNAME,
        password=BROKER_PASSWORD,
    ))
GSSAPI Authentication

GSSAPI authentication over plain text:

app = faust.App(
    broker_credentials=faust.GSSAPICredentials(
        kerberos_service_name='faust',
        kerberos_domain_name='example.com',
    ),
)

GSSAPI authentication over SSL:

import ssl
ssl_context = ssl.create_default_context(
    purpose=ssl.Purpose.SERVER_AUTH, cafile='ca.pem')
ssl_context.load_cert_chain('client.cert', keyfile='client.key')

app = faust.App(
    broker_credentials=faust.GSSAPICredentials(
        kerberos_service_name='faust',
        kerberos_domain_name='example.com',
        ssl_context=ssl_context,
    ),
)
SSL Authentication

Provide an SSL context for the Kafka broker connections.

This allows Faust to use a secure SSL/TLS connection for the Kafka connections and enabling certificate-based authentication.

import ssl

ssl_context = ssl.create_default_context(
    purpose=ssl.Purpose.SERVER_AUTH, cafile='ca.pem')
ssl_context.load_cert_chain('client.cert', keyfile='client.key')
app = faust.App(..., broker_credentials=ssl_context)
store
type

str

default

URL("memory://")

The backend used for table storage.

Tables are stored in-memory by default, but you should not use the memory:// store in production.

In production, a persistent table store, such as rocksdb:// is preferred.

cache

New in version 1.2.

type

str

default

URL("memory://")

Optional backend used for Memcached-style caching. URL can be: redis://host, rediscluster://host, or memory://.

processing_guarantee

New in version 1.5.

type

str

default

"at_least_once"

The processing guarantee that should be used.

Possible values are “at_least_once” (default) and “exactly_once”. Note that if exactly-once processing is enabled consumers are configured with isolation.level="read_committed" and producers are configured with retries=Integer.MAX_VALUE and enable.idempotence=true per default. Note that by default exactly-once processing requires a cluster of at least three brokers what is the recommended setting for production. For development you can change this, by adjusting broker setting transaction.state.log.replication.factor to the number of brokers you want to use.

autodiscover
type

Union[bool, Iterable[str], Callable[[], Iterable[str]]]

Enable autodiscovery of agent, task, timer, page and command decorators.

Faust has an API to add different asyncio services and other user extensions, such as “Agents”, HTTP web views, command-line commands, and timers to your Faust workers. These can be defined in any module, so to discover them at startup, the worker needs to traverse packages looking for them.

Warning

The autodiscovery functionality uses the Venusian library to scan wanted packages for @app.agent, @app.page, @app.command, @app.task and @app.timer decorators, but to do so, it’s required to traverse the package path and import every module in it.

Importing random modules like this can be dangerous so make sure you follow Python programming best practices. Do not start threads; perform network I/O; do test monkey-patching for mocks or similar, as a side effect of importing a module. If you encounter a case such as this then please find a way to perform your action in a lazy manner.

Warning

If the above warning is something you cannot fix, or if it’s out of your control, then please set autodiscover=False and make sure the worker imports all modules where your decorators are defined.

The value for this argument can be:

bool

If App(autodiscover=True) is set, the autodiscovery will scan the package name described in the origin attribute.

The origin attribute is automatically set when you start a worker using the faust command line program, for example:

faust -A example.simple worker

The -A, option specifies the app, but you can also create a shortcut entry point by calling app.main():

if __name__ == '__main__':
    app.main()

Then you can start the faust program by executing for example python myscript.py worker --loglevel=INFO, and it will use the correct application.

Sequence[str]

The argument can also be a list of packages to scan:

app = App(..., autodiscover=['proj_orders', 'proj_accounts'])
Callable[[], Sequence[str]]

The argument can also be a function returning a list of packages to scan:

def get_all_packages_to_scan():
    return ['proj_orders', 'proj_accounts']

app = App(..., autodiscover=get_all_packages_to_scan)

False)

If everything you need is in a self-contained module, or you import the stuff you need manually, just set autodiscover to False and don’t worry about it :-)

Django

When using Django and the DJANGO_SETTINGS_MODULE environment variable is set, the Faust app will scan all packages found in the INSTALLED_APPS setting.

If you’re using Django you can use this to scan for agents/pages/commands in all packages defined in INSTALLED_APPS.

Faust will automatically detect that you’re using Django and do the right thing if you do:

app = App(..., autodiscover=True)

It will find agents and other decorators in all of the reusable Django applications. If you want to manually control what packages are traversed, then provide a list:

app = App(..., autodiscover=['package1', 'package2'])

or if you want exactly None packages to be traversed, then provide a False:

app = App(.., autodiscover=False)

which is the default, so you can simply omit the argument.

Tip

For manual control over autodiscovery, you can also call the app.discover() method manually.

version
type

int

default

1

Version of the app, that when changed will create a new isolated instance of the application. The first version is 1, the second version is 2, and so on.

Source topics will not be affected by a version change.

Faust applications will use two kinds of topics: source topics, and internally managed topics. The source topics are declared by the producer, and we do not have the opportunity to modify any configuration settings, like number of partitions for a source topic; we may only consume from them. To mark a topic as internal, use: app.topic(..., internal=True).

timezone
type

datetime.tzinfo

default

datetime.timezone.utc

The timezone used for date-related functionality such as cronjobs.

New in version 1.4.

datadir
type

Union[str, pathlib.Path]

default

Path(f"{app.conf.id}-data")

environment

FAUST_DATADIR, F_DATADIR

The directory in which this instance stores the data used by local tables, etc.

See also

  • The data directory can also be set using the faust --datadir option, from the command-line, so there’s usually no reason to provide a default value when creating the app.

tabledir
type

Union[str, pathlib.Path]

default

"tables"

The directory in which this instance stores local table data. Usually you will want to configure the datadir setting, but if you want to store tables separately you can configure this one.

If the path provided is relative (it has no leading slash), then the path will be considered to be relative to the datadir setting.

id_format
type

str

default

"{id}-v{self.version}"

The format string used to generate the final id value by combining it with the version parameter.

logging_config

New in version 1.5.0.

Optional dictionary for logging configuration, as supported by logging.config.dictConfig().

loghandlers
type

List[logging.LogHandler]

default

[]

Specify a list of custom log handlers to use in worker instances.

origin
type

str

default

None

The reverse path used to find the app, for example if the app is located in:

from myproj.app import app

Then the origin should be "myproj.app".

The faust worker program will try to automatically set the origin, but if you are having problems with auto generated names then you can set origin manually.

Serialization Settings
key_serializer
type

Union[str, Codec]

default

"raw"

Serializer used for keys by default when no serializer is specified, or a model is not being used.

This can be the name of a serializer/codec, or an actual faust.serializers.codecs.Codec instance.

See also

  • The Codecs section in the model guide – for more information about codecs.

value_serializer
type

Union[str, Codec]

default

"json"

Serializer used for values by default when no serializer is specified, or a model is not being used.

This can be string, the name of a serializer/codec, or an actual faust.serializers.codecs.Codec instance.

See also

  • The Codecs section in the model guide – for more information about codecs.

Topic Settings
topic_replication_factor
type

int

default

1

The default replication factor for topics created by the application.

Note

Generally this should be the same as the configured replication factor for your Kafka cluster.

topic_partitions
type

int

default

8

Default number of partitions for new topics.

Note

This defines the maximum number of workers we could distribute the workload of the application (also sometimes referred as the sharding factor of the application).

topic_allow_declare

New in version 1.5.

type

bool

default

True

This setting disables the creation of internal topics.

Faust will only create topics that it considers to be fully owned and managed, such as intermediate repartition topics, table changelog topics etc.

Some Kafka managers does not allow services to create topics, in that case you should set this to False.

topic_disable_leader
type

bool

default

False

This setting disables the creation of the leader election topic.

If you’re not using the on_leader=True argument to task/timer/etc., decorators then use this setting to disable creation of the topic.

Advanced Broker Settings
broker_consumer
type

Union[str, URL, List[URL]]

default

None

You can use this setting to configure the transport used for producing and consuming separately.

If not set the value found in broker will be used.

broker_producer
type

Union[str, URL, List[URL]]

default

None

You can use this setting to configure the transport used for producing and consuming separately.

If not set the value found in broker will be used.

broker_client_id
type

str

default

f"faust-{VERSION}"

There is rarely any reason to configure this setting.

The client id is used to identify the software used, and is not usually configured by the user.

broker_request_timeout

New in version 1.4.0.

type

int

default

90.0 (seconds)

Kafka client request timeout.

Note

The request timeout must not be less than the broker_session_timeout.

broker_commit_every
type

int

default

10_000

Commit offset every n messages.

See also broker_commit_interval, which is how frequently we commit on a timer when there are few messages being received.

broker_commit_interval
type

float, timedelta

default

2.8

How often we commit messages that have been fully processed (acked).

broker_commit_livelock_soft_timeout
type

float, timedelta

default

300.0 (five minutes)

How long time it takes before we warn that the Kafka commit offset has not advanced (only when processing messages).

broker_check_crcs
type

bool

default

True

Automatically check the CRC32 of the records consumed.

broker_heartbeat_interval

New in version 1.0.11.

type

int

default

3.0 (three seconds)

How often we send heartbeats to the broker, and also how often we expect to receive heartbeats from the broker.

If any of these time out, you should increase this setting.

broker_session_timeout

New in version 1.0.11.

type

int

default

60.0 (one minute)

How long to wait for a node to finish rebalancing before the broker will consider it dysfunctional and remove it from the cluster.

Increase this if you experience the cluster being in a state of constantly rebalancing, but make sure you also increase the broker_heartbeat_interval at the same time.

Note

The session timeout must not be greater than the broker_request_timeout.

broker_max_poll_records

New in version 1.4.

type

int

default

None

The maximum number of records returned in a single call to poll(). If you find that your application needs more time to process messages you may want to adjust broker_max_poll_records to tune the number of records that must be handled on every loop iteration.

broker_max_poll_interval

New in version 1.7.

type

float

default

1000.0

The maximum allowed time (in seconds) between calls to consume messages If this interval is exceeded the consumer is considered failed and the group will rebalance in order to reassign the partitions to another consumer group member. If API methods block waiting for messages, that time does not count against this timeout.

See KIP-62 for technical details.

Advanced Consumer Settings
consumer_max_fetch_size

New in version 1.4.

type

int

default

4*1024**2

The maximum amount of data per-partition the server will return. This size must be at least as large as the maximum message size.

consumer_auto_offset_reset

New in version 1.5.

type

string

default

"earliest"

Where the consumer should start reading messages from when there is no initial offset, or the stored offset no longer exists, e.g. when starting a new consumer for the first time. Options include ‘earliest’, ‘latest’, ‘none’.

ConsumerScheduler

New in version 1.5.

type

Union[str, Type[SchedulingStrategyT]

default

faust.transport.utils.DefaultSchedulingStrategy

A strategy which dictates the priority of topics and partitions for incoming records. The default strategy does first round-robin over topics and then round-robin over partitions.

Example using a class:

class MySchedulingStrategy(DefaultSchedulingStrategy):
    ...

app = App(..., ConsumerScheduler=MySchedulingStrategy)

Example using the string path to a class:

app = App(..., ConsumerScheduler='myproj.MySchedulingStrategy')
Advanced Producer Settings
producer_compression_type
type

string

default

None

The compression type for all data generated by the producer. Valid values are gzip, snappy, lz4, or None.

producer_linger_ms
type

int

default

0

Minimum time to batch before sending out messages from the producer.

Should rarely have to change this.

producer_max_batch_size
type

int

default

16384

Max size of each producer batch, in bytes.

producer_max_request_size
type

int

default

1000000

Maximum size of a request in bytes in the producer.

Should rarely have to change this.

producer_acks
type

int

default

-1

The number of acknowledgments the producer requires the leader to have received before considering a request complete. This controls the durability of records that are sent. The following settings are common:

  • 0: Producer will not wait for any acknowledgment from the server at all. The message will immediately be considered sent. (Not recommended)

  • 1: The broker leader will write the record to its local log but will respond without awaiting full acknowledgment from all followers. In this case should the leader fail immediately after acknowledging the record but before the followers have replicated it then the record will be lost.

  • -1: The broker leader will wait for the full set of in-sync replicas to acknowledge the record. This guarantees that the record will not be lost as long as at least one in-sync replica remains alive. This is the strongest available guarantee.

producer_request_timeout

New in version 1.4.

type

float, datetime.timedelta

default

1200.0 (20 minutes)

Timeout for producer operations. This is set high by default, as this is also the time when producer batches expire and will no longer be retried.

producer_api_version

New in version 1.5.3.

type

str

default

"auto"

Negotiate producer protocol version.

The default value - “auto” means use the latest version supported by both client and server.

Any other version set means you are requesting a specific version of the protocol.

Example Kafka uses:

Disable sending headers for all messages produced

Kafka headers support was added in Kafka 0.11, so you can specify api_version="0.10" to remove the headers from messages.

producer_partitioner

New in version 1.2.

type

Callable[[bytes, List[int], List[int]], int]

default

None

The Kafka producer can be configured with a custom partitioner to change how keys are partitioned when producing to topics.

The default partitioner for Kafka is implemented as follows, and can be used as a template for your own partitioner:

import random
from typing import List
from kafka.partitioner.hashed import murmur2

def partition(key: bytes,
              all_partitions: List[int],
              available: List[int]) -> int:
    """Default partitioner.

    Hashes key to partition using murmur2 hashing (from java client)
    If key is None, selects partition randomly from available,
    or from all partitions if none are currently available

    Arguments:
        key: partitioning key
        all_partitions: list of all partitions sorted by partition ID.
        available: list of available partitions in no particular order
    Returns:
        int: one of the values from ``all_partitions`` or ``available``.
    """
    if key is None:
        source = available if available else all_paritions
        return random.choice(source)
    index: int = murmur2(key)
    index &= 0x7fffffff
    index %= len(all_partitions)
    return all_partitions[index]
Advanced Table Settings
table_cleanup_interval
type

float, timedelta

default

30.0

How often we cleanup tables to remove expired entries.

table_standby_replicas
type

int

default

1

The number of standby replicas for each table.

table_key_index_size

New in version 1.8.

type

int

default

1000

Tables keep a cache of key to partition number to speed up table lookups.

This setting configures the maximum size of that cache.

Advanced Stream Settings
stream_buffer_maxsize
type

int

default

4096

This setting control back pressure to streams and agents reading from streams.

If set to 4096 (default) this means that an agent can only keep at most 4096 unprocessed items in the stream buffer.

Essentially this will limit the number of messages a stream can “prefetch”.

Higher numbers gives better throughput, but do note that if your agent sends messages or update tables (which sends changelog messages).

This means that if the buffer size is large, the broker_commit_interval or broker_commit_every settings must be set to commit frequently, avoiding back pressure from building up.

A buffer size of 131_072 may let you process over 30,000 events a second as a baseline, but be careful with a buffer size that large when you also send messages or update tables.

stream_recovery_delay
type

Union[float, datetime.timedelta]

default

0.0

Number of seconds to sleep before continuing after rebalance. We wait for a bit to allow for more nodes to join/leave before starting recovery tables and then processing streams. This to minimize the chance of errors rebalancing loops.

Changed in version 1.5.3: Disabled by default.

stream_wait_empty
type

bool

default

True

This setting controls whether the worker should wait for the currently processing task in an agent to complete before rebalancing or shutting down.

On rebalance/shut down we clear the stream buffers. Those events will be reprocessed after the rebalance anyway, but we may have already started processing one event in every agent, and if we rebalance we will process that event again.

By default we will wait for the currently active tasks, but if your streams are idempotent you can disable it using this setting.

stream_publish_on_commit
type

bool

default

False

If enabled we buffer up sending messages until the source topic offset related to that processing is committed. This means when we do commit, we may have buffered up a LOT of messages so commit needs to happen frequently (make sure to decrease broker_commit_every).

Advanced Worker Settings
worker_redirect_stdouts
type

bool

default

True

Enable to have the worker redirect output to sys.stdout and sys.stderr to the Python logging system.

Enabled by default.

worker_redirect_stdouts_level
type

str/int

default

"WARN"

The logging level to use when redirect STDOUT/STDERR to logging.

Advanced Web Server Settings
web

New in version 1.2.

type

str

default

URL("aiohttp://")

The web driver to use.

web_enabled

New in version 1.2.

type

bool

default

True

Enable web server and other web components.

This option can also be set using faust worker --without-web.

web_transport

New in version 1.2.

type

str

default

URL("tcp://")

The network transport used for the web server.

Default is to use TCP, but this setting also enables you to use Unix domain sockets. To use domain sockets specify an URL including the path to the file you want to create like this:

unix:///tmp/server.sock

This will create a new domain socket available in /tmp/server.sock.

canonical_url
type

str

default

URL(f"http://{web_host}:{web_port}")

You shouldn’t have to set this manually.

The canonical URL defines how to reach the web server on a running worker node, and is usually set by combining the faust worker --web-host and faust worker --web-port command line arguments, not by passing it as a keyword argument to App.

web_host

New in version 1.2.

type

str

default

f"{socket.gethostname()}"

Hostname used to access this web server, used for generating the canonical_url setting.

This option is usually set by faust worker --web-host, not by passing it as a keyword argument to app.

web_port

New in version 1.2.

type

int

default

6066

A port number between 1024 and 65535 to use for the web server.

This option is usually set by faust worker --web-port, not by passing it as a keyword argument to app.

web_bind

New in version 1.2.

type

str

default

"0.0.0.0"

The IP network address mask that decides what interfaces the web server will bind to.

By default this will bind to all interfaces.

This option is usually set by faust worker --web-bind, not by passing it as a keyword argument to app.

web_in_thread

New in version 1.5.

type

bool

default

False

Run the web server in a separate thread.

Use this if you have a large value for stream_buffer_maxsize and want the web server to be responsive when the worker is otherwise busy processing streams.

Note

Running the web server in a separate thread means web views and agents will not share the same event loop.

web_cors_options

New in version 1.5.

type

Mapping[str, ResourceOptions]

default

None

Enable Cross-Origin Resource Sharing options for all web views in the internal web server.

This should be specified as a dictionary of URLs to ResourceOptions:

app = App(..., web_cors_options={
    'http://foo.example.com': ResourceOptions(
        allow_credentials=True,
        allow_methods='*',
    )
})

Individual views may override the CORS options used as arguments to to @app.page and blueprint.route.

Advanced Agent Settings
agent_supervisor
type

str:/mode.SupervisorStrategyT

default

mode.OneForOneSupervisor

An agent may start multiple instances (actors) when the concurrency setting is higher than one (e.g. @app.agent(concurrency=2)).

Multiple instances of the same agent are considered to be in the same supervisor group.

The default supervisor is the mode.OneForOneSupervisor: if an instance in the group crashes, we restart that instance only.

These are the supervisors supported:

Agent RPC Settings
reply_to
type

str

default

str(uuid.uuid4())

The name of the reply topic used by this instance. If not set one will be automatically generated when the app is created.

reply_create_topic
type

bool

default

False

Set this to True if you plan on using the RPC with agents.

This will create the internal topic used for RPC replies on that instance at startup.

reply_expires
type

Union[float, datetime.timedelta]

default

timedelta(days=1)

The expiry time (in seconds float, or timedelta), for how long replies will stay in the instances local reply topic before being removed.

reply_to_prefix
type

str

default

"f-reply-"

The prefix used when generating reply topic names.

Extension Settings
Agent
type

Union[str, Type]

default

faust.Agent

The Agent class to use for agents, or the fully-qualified path to one (supported by symbol_by_name()).

Example using a class:

class MyAgent(faust.Agent):
    ...

app = App(..., Agent=MyAgent)

Example using the string path to a class:

app = App(..., Agent='myproj.agents.Agent')
Stream
type

Union[str, Type]

default

faust.Stream

The Stream class to use for streams, or the fully-qualified path to one (supported by symbol_by_name()).

Example using a class:

class MyBaseStream(faust.Stream):
    ...

app = App(..., Stream=MyBaseStream)

Example using the string path to a class:

app = App(..., Stream='myproj.streams.Stream')
Table
type

Union[str, Type[TableT]]

default

faust.Table

The Table class to use for tables, or the fully-qualified path to one (supported by symbol_by_name()).

Example using a class:

class MyBaseTable(faust.Table):
    ...

app = App(..., Table=MyBaseTable)

Example using the string path to a class:

app = App(..., Table='myproj.tables.Table')
SetTable
type

Union[str, Type[TableT]]

default

faust.SetTable

The SetTable class to use for table-of-set tables, or the fully-qualified path to one (supported by symbol_by_name()).

Example using a class:

class MySetTable(faust.SetTable):
    ...

app = App(..., Table=MySetTable)

Example using the string path to a class:

app = App(..., Table='myproj.tables.MySetTable')
TableManager
type

Union[str, Type[TableManagerT]]

default

faust.tables.TableManager

The TableManager used for managing tables, or the fully-qualified path to one (supported by symbol_by_name()).

Example using a class:

from faust.tables import TableManager

class MyTableManager(TableManager):
    ...

app = App(..., TableManager=MyTableManager)

Example using the string path to a class:

app = App(..., TableManager='myproj.tables.TableManager')
Serializers
type

Union[str, Type[RegistryT]]

default

faust.serializers.Registry

The Registry class used for serializing/deserializing messages; or the fully-qualified path to one (supported by symbol_by_name()).

Example using a class:

from faust.serialiers import Registry

class MyRegistry(Registry):
    ...

app = App(..., Serializers=MyRegistry)

Example using the string path to a class:

app = App(..., Serializers='myproj.serializers.Registry')
Worker
type

Union[str, Type[WorkerT]]

default

faust.Worker

The Worker class used for starting a worker for this app; or the fully-qualified path to one (supported by symbol_by_name()).

Example using a class:

import faust

class MyWorker(faust.Worker):
    ...

app = faust.App(..., Worker=Worker)

Example using the string path to a class:

app = faust.App(..., Worker='myproj.workers.Worker')
PartitionAssignor
type

Union[str, Type[PartitionAssignorT]]

default

faust.assignor.PartitionAssignor

The PartitionAssignor class used for assigning topic partitions to worker instances; or the fully-qualified path to one (supported by symbol_by_name()).

Example using a class:

from faust.assignor import PartitionAssignor

class MyPartitionAssignor(PartitionAssignor):
    ...

app = App(..., PartitionAssignor=PartitionAssignor)

Example using the string path to a class:

app = App(..., Worker='myproj.assignor.PartitionAssignor')
LeaderAssignor
type

Union[str, Type[LeaderAssignorT]]

default

faust.assignor.LeaderAssignor

The LeaderAssignor class used for assigning a master Faust instance for the app; or the fully-qualified path to one (supported by symbol_by_name()).

Example using a class:

from faust.assignor import LeaderAssignor

class MyLeaderAssignor(LeaderAssignor):
    ...

app = App(..., LeaderAssignor=LeaderAssignor)

Example using the string path to a class:

app = App(..., Worker='myproj.assignor.LeaderAssignor')
Router
type

Union[str, Type[RouterT]]

default

faust.app.router.Router

The Router class used for routing requests to a worker instance having the partition for a specific key (e.g. table key); or the fully-qualified path to one (supported by symbol_by_name()).

Example using a class:

from faust.router import Router

class MyRouter(Router):
    ...

app = App(..., Router=Router)

Example using the string path to a class:

app = App(..., Router='myproj.routers.Router')
Topic
type

Union[str, Type[TopicT]]

default

faust.Topic

The Topic class used for defining new topics; or the fully-qualified path to one (supported by symbol_by_name()).

Example using a class:

import faust

class MyTopic(faust.Topic):
    ...

app = faust.App(..., Topic=MyTopic)

Example using the string path to a class:

app = faust.App(..., Topic='myproj.topics.Topic')
HttpClient
type

Union[str, Type[HttpClientT]]

default

aiohttp.client.ClientSession

The aiohttp.client.ClientSession class used as a HTTP client; or the fully-qualified path to one (supported by symbol_by_name()).

Example using a class:

import faust
from aiohttp.client import ClientSession

class HttpClient(ClientSession):
    ...

app = faust.App(..., HttpClient=HttpClient)

Example using the string path to a class:

app = faust.App(..., HttpClient='myproj.http.HttpClient')
Monitor
type

Union[str, Type[SensorT]]

default

faust.sensors.Monitor

The Monitor class as the main sensor gathering statistics for the application; or the fully-qualified path to one (supported by symbol_by_name()).

Example using a class:

import faust
from faust.sensors import Monitor

class MyMonitor(Monitor):
    ...

app = faust.App(..., Monitor=MyMonitor)

Example using the string path to a class:

app = faust.App(..., Monitor='myproj.monitors.Monitor')

Installation

Installation

You can install Faust either via the Python Package Index (PyPI) or from source.

To install using pip:

$ pip install -U faust
Bundles

Faust also defines a group of setuptools extensions that can be used to install Faust and the dependencies for a given feature.

You can specify these in your requirements or on the pip command-line by using brackets. Separate multiple bundles using the comma:

$ pip install "faust[rocksdb]"

$ pip install "faust[rocksdb,uvloop,fast,redis]"

The following bundles are available:

Stores
faust[rocksdb]

for using RocksDB for storing Faust table state.

Recommended in production.

Caching
faust[redis]

for using Redis_ as a simple caching backend (Memcached-style).

Optimization
faust[fast]

for installing all the available C speedup extensions to Faust core.

Sensors
faust[datadog]

for using the Datadog Faust monitor.

faust[statsd]

for using the Statsd Faust monitor.

Event Loops
faust[uvloop]

for using Faust with uvloop.

faust[gevent]

for using Faust with gevent.

faust[eventlet]

for using Faust with eventlet

Debugging
faust[debug]

for using aiomonitor to connect and debug a running Faust worker.

faust[setproctitle]

when the setproctitle module is installed the Faust worker will use it to set a nicer process name in ps/top listings. Also installed with the fast and debug bundles.

Downloading and installing from source

Download the latest version of Faust from http://pypi.org/project/faust

You can install it by doing:

$ tar xvfz faust-0.0.0.tar.gz
$ cd faust-0.0.0
$ python setup.py build
# python setup.py install

The last command must be executed as a privileged user if you are not currently using a virtualenv.

Using the development version
With pip

You can install the latest snapshot of Faust using the following pip command:

$ pip install https://github.com/robinhood/faust/zipball/master#egg=faust

Kafka - The basics you need to know

Kafka is a distributed streaming platform which uses logs as the unit of storage for messages passed within the system. It is horizontally scalable, fault-tolerant, fast, and runs in production in thousands of companies. Likely your business is already using it in some form.

What you must know about Apache Kafka to use Faust

Topics

A topic is a stream name to which records are published. Topics in Kafka are always multi-subscriber; that is, a topic can have zero, one, or many consumers that subscribe to the data written to it. Topics are also the base abstraction of where data lives within Kafka. Each topic is backed by logs which are partitioned and distributed.

Faust uses the abstraction of a topic to both consume data from a stream as well as publish data to more streams represented by Kafka topics. A Faust application needs to be consuming from at least one topic and may create many intermediate topics as a by-product of your streaming application. Every topic that is not created by Faust internally can be thought of as a source (for your application to process) or sink (for other systems to pick up).

Partitions

Partitions are the fundamental unit within Kafka where data lives. Every topic is split into one or more partitions. These partitions are represented internally as logs and messages always make their way to one partition (log). Each partition is replicated and has one leader at any point in time.

Faust uses the notion of a partition to maintain order amongst messages and as a way to split the processing of data to increase throughput. A Faust application uses the notion of a “key” to make sure that messages that should appear together and be processed on the same box do end up on the same box.

Fault Tolerance

Every partition is replicated with the total copies represented by the In Sync Replicas (ISR). Every ISR is a candidate to take over as the new leader should the current leader fail. The maximum number of faulty Kafka brokers that can be tolerated is the number of ISR - 1. I.e., if every partition has three replicas, all fault tolerance guarantees hold as long as at least one replica is functional

Faust has the same guarantees that Kafka offers with regards to fault tolerance of the data.

Distribution of load/work

For every partition, all reads and writes are routed to the leader of that partition. For a specific topic, the load is as distributed as the number of partitions. Note: Since the partition is the lowest degree of parallel processing of messages, the number of partitions control how much many parallel instances of the consumers can operate on messages.

Faust uses parallel consumers and therefore is also limited by the number of partitions to dictate how many concurrent Faust application instances can run to distribute work. Extra Faust application instances beyond the source topic partition count will be idle and not improve message processing rates.

Offsets

For every <topic, partition> combination Kafka keeps track of the offset of messages in the log to know where new messages should be appended. On a consumer level, offsets are maintained at the <group, topic, partition> level for consumers to know where to continue consuming for a given “group”. The group acts as a namespace for consumers to register when multiple consumers want to share the load on a single topic.

Kafka maintains processing guarantees of at least once by committing offsets after message consumption. Once an offset has been committed at the consumer level, the message at that offset for the <group, topic, partition> will not be reread.

Faust uses the notion of a group to maintain a namespace within an app. Faust commits offsets after when a message is processed through all of its operations. Faust allows a configurable commit interval which makes sure that all messages that have been processed completely since the last interval will be committed.

Log Compaction

Log compaction is a methodology Kafka uses to make sure that as data for a key changes it will not affect the size of the log such that every state change is maintained for all time. Only the most recent value is guaranteed to be available. Periodic compaction removes all values for a key except the last one.

Tables in Faust use log compaction to ensure table state can be recovered without a large space overhead.

This summary and information about Kafka is adapted from original documentation on Kafka available at https://kafka.apache.org/

Debugging

Debugging with aiomonitor

To use the debugging console you first need to install the aiomonitor library:

$ pip install aiomonitor

You can also install it as part of a bundle:

$ pip install -U faust[debug]

After aiomonitor is installed you may start the worker with the --debug option enabled:

$ faust -A myapp --debug worker -l info
┌ƒaµS† v0.9.20─────────────────────────────────────────┐
│ id        │ word-counts                              │
│ transport │ kafka://localhost:9092                   │
│ store     │ rocksdb:                                 │
│ web       │ http://localhost:6066/                   │
│ log       │ -stderr- (info)                          │
│ pid       │ 55522                                    │
│ hostname  │ grainstate.local                         │
│ platform  │ CPython 3.6.3 (Darwin x86_64)            │
│ drivers   │ aiokafka=0.3.2 aiohttp=2.3.7             │
│ datadir   │ /opt/devel/faust/word-counts-data        │
└───────────┴──────────────────────────────────────────┘
[2018-01-04 12:41:07,635: INFO]: Starting aiomonitor at 127.0.0.1:50101
[2018-01-04 12:41:07,637: INFO]: Starting console at 127.0.0.1:50101
[2018-01-04 12:41:07,638: INFO]: [^Worker]: Starting...
[2018-03-13 13:41:39,275: INFO]: [^-App]: Starting...
[2018-01-04 12:41:07,638: INFO]: [^--Web]: Starting...
[...]

From the log output you can tell that the aiomonitor console was started on the local port 50101. If you get a different output, such as that the port is already taken you can set a custom port using the --console-port.

Once you have the port number, you can telnet into the console to use it:

$ telnet localhost 50101
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.

Asyncio Monitor: 38 tasks running
Type help for commands

monitor >>>

Type help and then press enter to see a list of available commands:

monitor >>> help
Commands:
         ps               : Show task table
         where taskid     : Show stack frames for a task
         cancel taskid    : Cancel an indicated task
         signal signame   : Send a Unix signal
         console          : Switch to async Python REPL
         quit             : Leave the monitor
monitor >>>

To exit out of the console you can either type quit at the monitor >> prompt. If that is unresponsive you may hit the special telnet escape character (Ctrl-]), to drop you into the telnet command console, and from there you just type quit to exit out of the telnet session:

$> telnet localhost 50101
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.

Asyncio Monitor: 38 tasks running
Type help for commands
monitor >>> ^]
telnet> quit
Connection closed.

Workers Guide

Managing individual instances

This part describes managing individual instances and is more relevant in development.

Make sure you also read the ref:worker-cluster section of this guide for production deployments.

Starting a worker

If you have defined a Faust app in the module proj.py:

# proj.py
import faust

app = faust.App('proj', broker='kafka://localhost:9092')

@app.agent()
async def process(stream):
    async for value in stream:
        print(value)

You can start the worker in the foreground by executing the command:

$ faust -A proj worker -l info

For a full list of available command-line options simply do:

$ faust worker --help

You can start multiple workers for the same app on the same machine, but be sure to provide a unique web server port to each worker, and also a unique data directory.

Start first worker:

$ faust --datadir=/var/faust/worker1 -A proj -l info worker --web-port=6066

Then start the second worker:

$ faust --datadir=/var/faust/worker2 -A proj -l info worker --web-port=6067

Sharing Data Directories

Worker instances should not share data directories, so make sure to specify a different data directory for every worker instance.

Stopping a worker

Shutdown is accomplished using the TERM signal.

When shutdown is initiated the worker will finish all currently executing tasks before it actually terminates. If these tasks are important, you should wait for it to finish before doing anything drastic, like sending the KILL signal.

If the worker won’t shutdown after considerate time, for being stuck in an infinite-loop or similar, you can use the KILL signal to force terminate the worker. The tasks that did not complete will be executed again by another worker.

Starting subprocesses

For Faust applications that start subprocesses as a side effect of processing the stream, you should know that the “double-fork” problem on Unix means that the worker will not be able to reap its children when killed using the KILL signal.

To kill the worker and any child processes, this command usually does the trick:

$ pkill -9 -f 'faust'

If you don’t have the pkill command on your system, you can use the slightly longer version:

$ ps auxww | grep 'faust' | awk '{print $2}' | xargs kill -9
Restarting a worker

To restart the worker you should send the TERM signal and start a new instance.

Kafka Rebalancing

When using Kafka, stopping or starting new workers will trigger a rebalancing operation that require all workers to stop stream processing.

See Managing a cluster for more information.

Process Signals

The worker’s main process overrides the following signals:

TERM

Warm shutdown, wait for tasks to complete.

QUIT

Cold shutdown, terminate ASAP

USR1

Dump traceback for all active threads in logs

Managing a cluster

In production deployments the management of a cluster of worker instances is complicated by the Kafka rebalancing strategy.

Every time a new worker instance joins or leaves, the Kafka broker will ask all instances to perform a “rebalance” of available partitions.

This “stop the world” process will temporarily halt processing of all streams, and if this rebalancing operation is not managed properly, you may end up in a state of perpetual rebalancing: the workers will continually trigger rebalances to occur, effectively halting processing of the stream.

Note

The Faust web server is not affected by rebalancing, and will still serve web requests.

This is important to consider when using tables and serving table data over HTTP. Tables exposed in this manner will be eventually consistent and may serve stale data during a rebalancing operation.

When will rebalancing occur? It will occur should you restart one of the workers, or when restarting workers to deploy changes, and also if you change the number of partitions for a topic to scale a cluster up or down.

Restarting a cluster

To minimize the chance of rebalancing problems we suggest you use the following strategy to restart all the workers:

  1. Stop 50% of the workers (and wait for them to shut down).

  2. Start the workers you just stopped and wait for them to fully start.

  3. Stop the other half of the workers (and wait for them to shut down).

  4. Start the other half of the workers.

This should both minimize rebalancing issues and also keep the built-in web servers up and available to serve HTTP requests.

KIP-441 and the future…

The Kafka developer community have proposed a solution to this problem, so in the future we may have an easier way to deploy code changes and even support autoscaling of workers.

See KIP-441: Smooth Scaling Out for Kafka Streams for more information.

Frequently Asked Questions (FAQ)

FAQ

Can I use Faust with Django/Flask/etc.?

Yes! Use gevent or eventlet as a bridge to integrate with asyncio.

Using gevent

This approach works with any blocking Python library that can work with gevent.

Using gevent requires you to install the aiogevent module, and you can install this as a bundle with Faust:

$ pip install -U faust[gevent]

Then to actually use gevent as the event loop you have to either use the -L option to the faust program:

$ faust -L gevent -A myproj worker -l info

or add import mode.loop.gevent at the top of your entry point script:

#!/usr/bin/env python3
import mode.loop.gevent

REMEMBER: It’s very important that this is at the very top of the module, and that it executes before you import libraries.

Using eventlet

This approach works with any blocking Python library that can work with eventlet.

Using eventlet requires you to install the aioeventlet module, and you can install this as a bundle along with Faust:

$ pip install -U faust[eventlet]

Then to actually use eventlet as the event loop you have to either use the -L argument to the faust program:

$ faust -L eventlet -A myproj worker -l info

or add import mode.loop.eventlet at the top of your entry point script:

#!/usr/bin/env python3
import mode.loop.eventlet  # noqa

Warning

It’s very important this is at the very top of the module, and that it executes before you import libraries.

Can I use Faust with Tornado?

Yes! Use the tornado.platform.asyncio bridge: http://www.tornadoweb.org/en/stable/asyncio.html

Can I use Faust with Twisted?

Yes! Use the asyncio reactor implementation: https://twistedmatrix.com/documents/17.1.0/api/twisted.internet.asyncioreactor.html

Will you support Python 3.5 or earlier?

There are no immediate plans to support Python 3.5, but you are welcome to contribute to the project.

Here are some of the steps required to accomplish this:

  • Source code transformation to rewrite variable annotations to comments

    for example, the code:

         class Point:
             x: int = 0
             y: int = 0
    
    must be rewritten into::
    
         class Point:
             x = 0  # type: int
             y = 0  # type: int
    
  • Source code transformation to rewrite async functions

    for example, the code:

    async def foo():
        await asyncio.sleep(1.0)
    

    must be rewritten into:

    @coroutine
    def foo():
        yield from asyncio.sleep(1.0)
    
Will you support Python 2?

There are no plans to support Python 2, but you are welcome to contribute to the project (details in the question above is relevant also for Python 2).

I get a maximum number of open files exceeded error by RocksDB when running a Faust app locally. How can I fix this?

You may need to increase the limit for the maximum number of open files. The following post explains how to do so on OS X: https://blog.dekstroza.io/ulimit-shenanigans-on-osx-el-capitan/

What kafka versions faust supports?

Faust supports kafka with version >= 0.10.

API Reference

Release

1.7

Date

Jul 23, 2019

Faust

faust

Python Stream processing.

class faust.Agent(fun: Callable[faust.types.streams.StreamT, Union[Coroutine[[Any, Any], None], Awaitable[None], AsyncIterable]], *, app: faust.types.app.AppT, name: str = None, channel: Union[str, faust.types.channels.ChannelT] = None, concurrency: int = 1, sink: Iterable[Union[AgentT, faust.types.channels.ChannelT, Callable[Any, Optional[Awaitable]]]] = None, on_error: Callable[[AgentT, BaseException], Awaitable] = None, supervisor_strategy: Type[mode.types.supervisors.SupervisorStrategyT] = None, help: str = None, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, isolated_partitions: bool = False, use_reply_headers: bool = None, **kwargs) → None[source]

Agent.

This is the type of object returned by the @app.agent decorator.

supervisor = None
on_init_dependencies() → Iterable[mode.types.services.ServiceT][source]

Return list of services dependencies required to start agent.

Return type

Iterable[ServiceT[]]

cancel() → None[source]

Cancel agent and its actor instances running in this process.

Return type

None

info() → Mapping[source]

Return agent attributes as a dictionary.

Return type

Mapping[~KT, +VT_co]

clone(*, cls: Type[faust.types.agents.AgentT] = None, **kwargs) → faust.types.agents.AgentT[source]

Create clone of this agent object.

Keyword arguments can be passed to override any argument supported by Agent.__init__.

Return type

AgentT[]

test_context(channel: faust.types.channels.ChannelT = None, supervisor_strategy: mode.types.supervisors.SupervisorStrategyT = None, on_error: Callable[[AgentT, BaseException], Awaitable] = None, **kwargs) → faust.types.agents.AgentTestWrapperT[source]

Create new unit-testing wrapper for this agent.

Return type

AgentTestWrapperT[]

actor_from_stream(stream: Optional[faust.types.streams.StreamT], *, index: int = None, active_partitions: Set[faust.types.tuples.TP] = None, channel: faust.types.channels.ChannelT = None) → faust.types.agents.ActorT[Union[AsyncIterable, Awaitable]][source]

Create new actor from stream.

Return type

ActorT[]

add_sink(sink: Union[AgentT, faust.types.channels.ChannelT, Callable[Any, Optional[Awaitable]]]) → None[source]

Add new sink to further handle results from this agent.

Return type

None

stream(channel: faust.types.channels.ChannelT = None, active_partitions: Set[faust.types.tuples.TP] = None, **kwargs) → faust.types.streams.StreamT[source]

Create underlying stream used by this agent.

Return type

StreamT[+T_co]

map(values: Union[AsyncIterable, Iterable], key: Union[bytes, faust.types.core._ModelT, Any, None] = None, reply_to: Union[AgentT, faust.types.channels.ChannelT, str] = None) → AsyncIterator[source]

RPC map operation on a list of values.

A map operation iterates over results as they arrive. See join() and kvjoin() if you want them in order.

Return type

AsyncIterator[+T_co]

kvmap(items: Union[AsyncIterable[Tuple[Union[bytes, faust.types.core._ModelT, Any, None], Union[bytes, faust.types.core._ModelT, Any]]], Iterable[Tuple[Union[bytes, faust.types.core._ModelT, Any, None], Union[bytes, faust.types.core._ModelT, Any]]]], reply_to: Union[AgentT, faust.types.channels.ChannelT, str] = None) → AsyncIterator[str][source]

RPC map operation on a list of (key, value) pairs.

A map operation iterates over results as they arrive. See join() and kvjoin() if you want them in order.

Return type

AsyncIterator[str]

get_topic_names() → Iterable[str][source]

Return list of topic names this agent subscribes to.

Return type

Iterable[str]

property channel

Return channel used by agent. :rtype: ChannelT[]

property channel_iterator

Return channel agent iterates over. :rtype: AsyncIterator[+T_co]

property label

Return human-readable description of agent. :rtype: str

property shortlabel

Return short description of agent. :rtype: str

logger = <Logger faust.agents.agent (WARNING)>
class faust.App(id: str, *, monitor: faust.sensors.monitor.Monitor = None, config_source: Any = None, loop: asyncio.events.AbstractEventLoop = None, beacon: mode.utils.types.trees.NodeT = None, **options) → None[source]

Faust Application.

Parameters

id (str) – Application ID.

Keyword Arguments

loop (asyncio.AbstractEventLoop) – optional event loop to use.

See also

Application Parameters – for supported keyword arguments.

SCAN_CATEGORIES = ['faust.agent', 'faust.command', 'faust.page', 'faust.service', 'faust.task']
class BootStrategy(app: faust.types.app.AppT, *, enable_web: bool = None, enable_kafka: bool = None, enable_kafka_producer: bool = None, enable_kafka_consumer: bool = None, enable_sensors: bool = None) → None

App startup strategy.

The startup strategy defines the graph of services to start when the Faust worker for an app starts.

agents() → Iterable[mode.types.services.ServiceT]

Return list of services required to start agents.

Return type

Iterable[ServiceT[]]

client_only() → Iterable[mode.types.services.ServiceT]

Return services to start when app is in client_only mode.

Return type

Iterable[ServiceT[]]

enable_kafka = True
enable_kafka_consumer = None
enable_kafka_producer = None
enable_sensors = True
enable_web = None
kafka_client_consumer() → Iterable[mode.types.services.ServiceT]

Return list of services required to start Kafka client consumer.

Return type

Iterable[ServiceT[]]

kafka_conductor() → Iterable[mode.types.services.ServiceT]

Return list of services required to start Kafka conductor.

Return type

Iterable[ServiceT[]]

kafka_consumer() → Iterable[mode.types.services.ServiceT]

Return list of services required to start Kafka consumer.

Return type

Iterable[ServiceT[]]

kafka_producer() → Iterable[mode.types.services.ServiceT]

Return list of services required to start Kafka producer.

Return type

Iterable[ServiceT[]]

producer_only() → Iterable[mode.types.services.ServiceT]

Return services to start when app is in producer_only mode.

Return type

Iterable[ServiceT[]]

sensors() → Iterable[mode.types.services.ServiceT]

Return list of services required to start sensors.

Return type

Iterable[ServiceT[]]

server() → Iterable[mode.types.services.ServiceT]

Return services to start when app is in default mode.

Return type

Iterable[ServiceT[]]

tables() → Iterable[mode.types.services.ServiceT]

Return list of table-related services.

Return type

Iterable[ServiceT[]]

web_components() → Iterable[mode.types.services.ServiceT]

Return list of web-related services (excluding web server).

Return type

Iterable[ServiceT[]]

web_server() → Iterable[mode.types.services.ServiceT]

Return list of web-server services.

Return type

Iterable[ServiceT[]]

class Settings(id: str, *, debug: bool = None, version: int = None, broker: Union[str, yarl.URL, List[yarl.URL]] = None, broker_client_id: str = None, broker_request_timeout: Union[datetime.timedelta, float, str] = None, broker_credentials: Union[faust.types.auth.CredentialsT, ssl.SSLContext] = None, broker_commit_every: int = None, broker_commit_interval: Union[datetime.timedelta, float, str] = None, broker_commit_livelock_soft_timeout: Union[datetime.timedelta, float, str] = None, broker_session_timeout: Union[datetime.timedelta, float, str] = None, broker_heartbeat_interval: Union[datetime.timedelta, float, str] = None, broker_check_crcs: bool = None, broker_max_poll_records: int = None, broker_max_poll_interval: int = None, broker_consumer: Union[str, yarl.URL, List[yarl.URL]] = None, broker_producer: Union[str, yarl.URL, List[yarl.URL]] = None, agent_supervisor: Union[_T, str] = None, store: Union[str, yarl.URL] = None, cache: Union[str, yarl.URL] = None, web: Union[str, yarl.URL] = None, web_enabled: bool = True, processing_guarantee: Union[str, faust.types.enums.ProcessingGuarantee] = None, timezone: datetime.tzinfo = None, autodiscover: Union[bool, Iterable[str], Callable[Iterable[str]]] = None, origin: str = None, canonical_url: Union[str, yarl.URL] = None, datadir: Union[pathlib.Path, str] = None, tabledir: Union[pathlib.Path, str] = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, logging_config: Dict = None, loghandlers: List[logging.Handler] = None, table_cleanup_interval: Union[datetime.timedelta, float, str] = None, table_standby_replicas: int = None, table_key_index_size: int = None, topic_replication_factor: int = None, topic_partitions: int = None, topic_allow_declare: bool = None, topic_disable_leader: bool = None, id_format: str = None, reply_to: str = None, reply_to_prefix: str = None, reply_create_topic: bool = None, reply_expires: Union[datetime.timedelta, float, str] = None, ssl_context: ssl.SSLContext = None, stream_buffer_maxsize: int = None, stream_wait_empty: bool = None, stream_ack_cancelled_tasks: bool = None, stream_ack_exceptions: bool = None, stream_publish_on_commit: bool = None, stream_recovery_delay: Union[datetime.timedelta, float, str] = None, producer_linger_ms: int = None, producer_max_batch_size: int = None, producer_acks: int = None, producer_max_request_size: int = None, producer_compression_type: str = None, producer_partitioner: Union[_T, str] = None, producer_request_timeout: Union[datetime.timedelta, float, str] = None, producer_api_version: str = None, consumer_max_fetch_size: int = None, consumer_auto_offset_reset: str = None, web_bind: str = None, web_port: int = None, web_host: str = None, web_transport: Union[str, yarl.URL] = None, web_in_thread: bool = None, web_cors_options: Mapping[str, faust.types.web.ResourceOptions] = None, worker_redirect_stdouts: bool = None, worker_redirect_stdouts_level: Union[int, str] = None, Agent: Union[_T, str] = None, ConsumerScheduler: Union[_T, str] = None, Stream: Union[_T, str] = None, Table: Union[_T, str] = None, SetTable: Union[_T, str] = None, TableManager: Union[_T, str] = None, Serializers: Union[_T, str] = None, Worker: Union[_T, str] = None, PartitionAssignor: Union[_T, str] = None, LeaderAssignor: Union[_T, str] = None, Router: Union[_T, str] = None, Topic: Union[_T, str] = None, HttpClient: Union[_T, str] = None, Monitor: Union[_T, str] = None, url: Union[str, yarl.URL] = None, **kwargs) → None
property Agent
Return type

Type[AgentT[]]

property ConsumerScheduler
Return type

Type[SchedulingStrategyT]

property HttpClient
Return type

Type[ClientSession]

property LeaderAssignor
Return type

Type[LeaderAssignorT[]]

property Monitor
Return type

Type[SensorT[]]

property PartitionAssignor
Return type

Type[PartitionAssignorT]

property Router
Return type

Type[RouterT]

property Serializers
Return type

Type[RegistryT]

property SetTable
Return type

Type[TableT[~KT, ~VT]]

property Stream
Return type

Type[StreamT[+T_co]]

property Table
Return type

Type[TableT[~KT, ~VT]]

property TableManager
Return type

Type[TableManagerT[]]

property Topic
Return type

Type[TopicT[]]

property Worker
Return type

Type[_WorkerT]

property agent_supervisor
Return type

Type[SupervisorStrategyT]

property appdir
Return type

Path

autodiscover = False
property broker
Return type

List[URL]

broker_check_crcs = True
broker_client_id = 'faust-1.7.4'
broker_commit_every = 10000
property broker_commit_interval
Return type

float

property broker_commit_livelock_soft_timeout
Return type

float

property broker_consumer
Return type

List[URL]

property broker_credentials
Return type

Optional[CredentialsT]

property broker_heartbeat_interval
Return type

float

broker_max_poll_interval = 1000.0
property broker_max_poll_records
Return type

Optional[int]

property broker_producer
Return type

List[URL]

property broker_request_timeout
Return type

float

property broker_session_timeout
Return type

float

property cache
Return type

URL

property canonical_url
Return type

URL

consumer_auto_offset_reset = 'earliest'
consumer_max_fetch_size = 4194304
property datadir
Return type

Path

debug = False
find_old_versiondirs() → Iterable[pathlib.Path]
Return type

Iterable[Path]

property id
Return type

str

id_format = '{id}-v{self.version}'
key_serializer = 'raw'
logging_config = None
property name
Return type

str

property origin
Return type

Optional[str]

property processing_guarantee
Return type

ProcessingGuarantee

producer_acks = -1
producer_api_version = 'auto'
producer_compression_type = None
producer_linger_ms = 0
producer_max_batch_size = 16384
producer_max_request_size = 1000000
property producer_partitioner
Return type

Optional[Callable[[Optional[bytes], Sequence[int], Sequence[int]], int]]

property producer_request_timeout
Return type

float

reply_create_topic = False
property reply_expires
Return type

float

reply_to_prefix = 'f-reply-'
classmethod setting_names() → Set[str]
Return type

Set[str]

ssl_context = None
property store
Return type

URL

stream_ack_cancelled_tasks = True
stream_ack_exceptions = True
stream_buffer_maxsize = 4096
stream_publish_on_commit = False
property stream_recovery_delay
Return type

float

stream_wait_empty = True
property table_cleanup_interval
Return type

float

table_key_index_size = 1000
table_standby_replicas = 1
property tabledir
Return type

Path

timezone = datetime.timezone.utc
topic_allow_declare = True
topic_disable_leader = False
topic_partitions = 8
topic_replication_factor = 1
value_serializer = 'json'
property version
Return type

int

property web
Return type

URL

web_bind = '0.0.0.0'
web_cors_options = None
web_host = 'build-9414419-project-230058-faust'
web_in_thread = False
web_port = 6066
property web_transport
Return type

URL

worker_redirect_stdouts = True
worker_redirect_stdouts_level = 'WARN'
client_only = False

Set this to True if app should only start the services required to operate as an RPC client (producer and simple reply consumer).

producer_only = False

Set this to True if app should run without consumer/tables.

tracer = None

Optional tracing support.

on_init_dependencies() → Iterable[mode.types.services.ServiceT][source]

Return list of additional service dependencies.

The services returned will be started with the app when the app starts.

Return type

Iterable[ServiceT[]]

config_from_object(obj: Any, *, silent: bool = False, force: bool = False) → None[source]

Read configuration from object.

Object is either an actual object or the name of a module to import.

Examples

>>> app.config_from_object('myproj.faustconfig')
>>> from myproj import faustconfig
>>> app.config_from_object(faustconfig)
Parameters
  • silent (bool) – If true then import errors will be ignored.

  • force (bool) – Force reading configuration immediately. By default the configuration will be read only when required.

Return type

None

finalize() → None[source]

Finalize app configuration.

Return type

None

worker_init() → None[source]

Init worker/CLI commands.

Return type

None

worker_init_post_autodiscover() → None[source]

Init worker after autodiscover.

Return type

None

discover(*extra_modules, categories: Iterable[str] = None, ignore: Iterable[Any] = [<built-in method search of _sre.SRE_Pattern object>, '.__main__']) → None[source]

Discover decorators in packages.

Return type

None

main() → NoReturn[source]

Execute the faust umbrella command using this app.

Return type

_NoReturn

topic(*topics, pattern: Union[str, Pattern[~AnyStr]] = None, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, partitions: int = None, retention: Union[datetime.timedelta, float, str] = None, compacting: bool = None, deleting: bool = None, replicas: int = None, acks: bool = True, internal: bool = False, config: Mapping[str, Any] = None, maxsize: int = None, allow_empty: bool = False, loop: asyncio.events.AbstractEventLoop = None) → faust.types.topics.TopicT[source]

Create topic description.

Topics are named channels (for example a Kafka topic), that exist on a server. To make an ephemeral local communication channel use: channel().

Return type

TopicT[]

channel(*, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, maxsize: int = None, loop: asyncio.events.AbstractEventLoop = None) → faust.types.channels.ChannelT[source]

Create new channel.

By default this will create an in-memory channel used for intra-process communication, but in practice channels can be backed by any transport (network or even means of inter-process communication).

Return type

ChannelT[]

agent(channel: Union[str, faust.types.channels.ChannelT] = None, *, name: str = None, concurrency: int = 1, supervisor_strategy: Type[mode.types.supervisors.SupervisorStrategyT] = None, sink: Iterable[Union[AgentT, faust.types.channels.ChannelT, Callable[Any, Optional[Awaitable]]]] = None, isolated_partitions: bool = False, use_reply_headers: bool = False, **kwargs) → Callable[Callable[faust.types.streams.StreamT, Union[Coroutine[[Any, Any], None], Awaitable[None], AsyncIterable]], faust.types.agents.AgentT][source]

Create Agent from async def function.

It can be a regular async function:

@app.agent()
async def my_agent(stream):
    async for number in stream:
        print(f'Received: {number!r}')

Or it can be an async iterator that yields values. These values can be used as the reply in an RPC-style call, or for sinks: callbacks that forward events to other agents/topics/statsd, and so on:

@app.agent(sink=[log_topic])
async def my_agent(requests):
    async for number in requests:
        yield number * 2
Return type

Callable[[Callable[[StreamT[+T_co]], Union[Coroutine[Any, Any, None], Awaitable[None], AsyncIterable[+T_co]]]], AgentT[]]

actor(channel: Union[str, faust.types.channels.ChannelT] = None, *, name: str = None, concurrency: int = 1, supervisor_strategy: Type[mode.types.supervisors.SupervisorStrategyT] = None, sink: Iterable[Union[AgentT, faust.types.channels.ChannelT, Callable[Any, Optional[Awaitable]]]] = None, isolated_partitions: bool = False, use_reply_headers: bool = False, **kwargs) → Callable[Callable[faust.types.streams.StreamT, Union[Coroutine[[Any, Any], None], Awaitable[None], AsyncIterable]], faust.types.agents.AgentT]

Create Agent from async def function.

It can be a regular async function:

@app.agent()
async def my_agent(stream):
    async for number in stream:
        print(f'Received: {number!r}')

Or it can be an async iterator that yields values. These values can be used as the reply in an RPC-style call, or for sinks: callbacks that forward events to other agents/topics/statsd, and so on:

@app.agent(sink=[log_topic])
async def my_agent(requests):
    async for number in requests:
        yield number * 2
Return type

Callable[[Callable[[StreamT[+T_co]], Union[Coroutine[Any, Any, None], Awaitable[None], AsyncIterable[+T_co]]]], AgentT[]]

task(fun: Union[Callable[AppT, Awaitable], Callable[Awaitable]] = None, *, on_leader: bool = False, traced: bool = True) → Union[Callable[Union[Callable[faust.types.app.AppT, Awaitable], Callable[Awaitable]], Union[Callable[faust.types.app.AppT, Awaitable], Callable[Awaitable]]], Callable[faust.types.app.AppT, Awaitable], Callable[Awaitable]][source]

Define an async def function to be started with the app.

This is like timer() but a one-shot task only executed at worker startup (after recovery and the worker is fully ready for operation).

The function may take zero, or one argument. If the target function takes an argument, the app argument is passed:

>>> @app.task
>>> async def on_startup(app):
...    print('STARTING UP: %r' % (app,))

Nullary functions are also supported:

>>> @app.task
>>> async def on_startup():
...     print('STARTING UP')
Return type

Union[Callable[[Union[Callable[[AppT[]], Awaitable[+T_co]], Callable[[], Awaitable[+T_co]]]], Union[Callable[[AppT[]], Awaitable[+T_co]], Callable[[], Awaitable[+T_co]]]], Callable[[AppT[]], Awaitable[+T_co]], Callable[[], Awaitable[+T_co]]]

timer(interval: Union[datetime.timedelta, float, str], on_leader: bool = False, traced: bool = True, name: str = None, max_drift_correction: float = 0.1) → Callable[source]

Define an async def function to be run at periodic intervals.

Like task(), but executes periodically until the worker is shut down.

This decorator takes an async function and adds it to a list of timers started with the app.

Parameters
  • interval (Seconds) – How often the timer executes in seconds.

  • on_leader (bool) – Should the timer only run on the leader?

Example

>>> @app.timer(interval=10.0)
>>> async def every_10_seconds():
...     print('TEN SECONDS JUST PASSED')
>>> app.timer(interval=5.0, on_leader=True)
>>> async def every_5_seconds():
...     print('FIVE SECONDS JUST PASSED. ALSO, I AM THE LEADER!')
Return type

Callable

crontab(cron_format: str, *, timezone: datetime.tzinfo = None, on_leader: bool = False, traced: bool = True) → Callable[source]

Define periodic task using Crontab description.

This is an async def function to be run at the fixed times, defined by the Cron format.

Like timer(), but executes at fixed times instead of executing at certain intervals.

This decorator takes an async function and adds it to a list of Cronjobs started with the app.

Parameters

cron_format (str) – The Cron spec defining fixed times to run the decorated function.

Keyword Arguments
  • timezone – The timezone to be taken into account for the Cron jobs. If not set value from timezone will be taken.

  • on_leader – Should the Cron job only run on the leader?

Example

>>> @app.crontab(cron_format='30 18 * * *',
                 timezone=pytz.timezone('US/Pacific'))
>>> async def every_6_30_pm_pacific():
...     print('IT IS 6:30pm')
>>> app.crontab(cron_format='30 18 * * *', on_leader=True)
>>> async def every_6_30_pm():
...     print('6:30pm UTC; ALSO, I AM THE LEADER!')
Return type

Callable

service(cls: Type[mode.types.services.ServiceT]) → Type[mode.types.services.ServiceT][source]

Decorate mode.Service to be started with the app.

Examples

from mode import Service

@app.service
class Foo(Service):
    ...
Return type

Type[ServiceT[]]

is_leader() → bool[source]

Return True if we are in leader worker process.

Return type

bool

stream(channel: Union[AsyncIterable, Iterable], beacon: mode.utils.types.trees.NodeT = None, **kwargs) → faust.types.streams.StreamT[source]

Create new stream from channel/topic/iterable/async iterable.

Parameters
Return type

StreamT[+T_co]

Returns

to iterate over events in the stream.

Return type

faust.Stream

Table(name: str, *, default: Callable[Any] = None, window: faust.types.windows.WindowT = None, partitions: int = None, help: str = None, **kwargs) → faust.types.tables.TableT[source]

Define new table.

Parameters
  • name (str) – Name used for table, note that two tables living in the same application cannot have the same name.

  • default (Optional[Callable[[], Any]]) – A callable, or type that will return a default value for keys missing in this table.

  • window (Optional[WindowT]) – A windowing strategy to wrap this window in.

Examples

>>> table = app.Table('user_to_amount', default=int)
>>> table['George']
0
>>> table['Elaine'] += 1
>>> table['Elaine'] += 1
>>> table['Elaine']
2
Return type

TableT[~KT, ~VT]

SetTable(name: str, *, window: faust.types.windows.WindowT = None, partitions: int = None, start_manager: bool = False, help: str = None, **kwargs) → faust.types.tables.TableT[source]

Table of sets.

Return type

TableT[~KT, ~VT]

page(path: str, *, base: Type[faust.web.views.View] = <class 'faust.web.views.View'>, cors_options: Mapping[str, faust.types.web.ResourceOptions] = None, name: str = None) → Callable[Union[Type[faust.types.web.View], Callable[[faust.types.web.View, faust.types.web.Request], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]], Callable[[faust.types.web.View, faust.types.web.Request, Any, Any], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]]], Type[faust.web.views.View]][source]

Decorate view to be included in the web server.

Return type

Callable[[Union[Type[View], Callable[[View, Request], Union[Coroutine[Any, Any, Response], Awaitable[Response]]], Callable[[View, Request, Any, Any], Union[Coroutine[Any, Any, Response], Awaitable[Response]]]]], Type[View]]

table_route(table: faust.types.tables.CollectionT, shard_param: str = None, *, query_param: str = None, match_info: str = None, exact_key: str = None) → Callable[Union[Callable[[faust.types.web.View, faust.types.web.Request], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]], Callable[[faust.types.web.View, faust.types.web.Request, Any, Any], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]]], Union[Callable[[faust.types.web.View, faust.types.web.Request], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]], Callable[[faust.types.web.View, faust.types.web.Request, Any, Any], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]]]][source]

Decorate view method to route request to table key destination.

Return type

Callable[[Union[Callable[[View, Request], Union[Coroutine[Any, Any, Response], Awaitable[Response]]], Callable[[View, Request, Any, Any], Union[Coroutine[Any, Any, Response], Awaitable[Response]]]]], Union[Callable[[View, Request], Union[Coroutine[Any, Any, Response], Awaitable[Response]]], Callable[[View, Request, Any, Any], Union[Coroutine[Any, Any, Response], Awaitable[Response]]]]]

command(*options, base: Optional[Type[faust.app.base._AppCommand]] = None, **kwargs) → Callable[Callable, Type[faust.app.base._AppCommand]][source]

Decorate async def function to be used as CLI command.

Return type

Callable[[Callable], Type[_AppCommand]]

trace(name: str, trace_enabled: bool = True, **extra_context) → ContextManager[source]

Return new trace context to trace operation using OpenTracing.

Return type

ContextManager[+T_co]

traced(fun: Callable, name: str = None, sample_rate: float = 1.0, **context) → Callable[source]

Decorate function to be traced using the OpenTracing API.

Return type

Callable

in_transaction[source]

Return True if stream is using transactions.

LiveCheck(**kwargs) → faust.app.base._LiveCheck[source]

Return new LiveCheck instance testing features for this app.

Return type

_LiveCheck

maybe_start_producer[source]

Ensure producer is started. :rtype: ProducerT[]

on_rebalance_start() → None[source]

Call when rebalancing starts.

Return type

None

on_rebalance_return() → None[source]
Return type

None

on_rebalance_end() → None[source]

Call when rebalancing is done.

Return type

None

FlowControlQueue(maxsize: int = None, *, clear_on_resume: bool = False, loop: asyncio.events.AbstractEventLoop = None) → mode.utils.queues.ThrowableQueue[source]

Like asyncio.Queue, but can be suspended/resumed.

Return type

ThrowableQueue

Worker(**kwargs) → faust.app.base._Worker[source]

Return application worker instance.

Return type

_Worker

on_webserver_init(web: faust.types.web.Web) → None[source]

Call when the Web server is initializing.

Return type

None

property conf

Application configuration. :rtype: Settings

property producer

Message producer. :rtype: ProducerT[]

property consumer

Message consumer. :rtype: ConsumerT[]

property transport

Consumer message transport. :rtype: TransportT

property producer_transport

Producer message transport. :rtype: TransportT

property cache

Cache backend. :rtype: CacheBackendT[]

logger = <Logger faust.app.base (WARNING)>
tables[source]

Map of available tables, and the table manager service.

topics[source]

Topic Conductor.

This is the mediator that moves messages fetched by the Consumer into the streams.

It’s also a set of registered topics by string topic name, so you can check if a topic is being consumed from by doing topic in app.topics.

property monitor

Monitor keeps stats about what’s going on inside the worker. :rtype: Monitor[]

flow_control[source]

Flow control of streams.

This object controls flow into stream queues, and can also clear all buffers.

property http_client

HTTP client Session. :rtype: ClientSession

assignor[source]

Partition Assignor.

Responsible for partition assignment.

router[source]

Find the node partitioned data belongs to.

The router helps us route web requests to the wanted Faust node. If a topic is sharded by account_id, the router can send us to the Faust worker responsible for any account. Used by the @app.table_route decorator.

web[source]

Web driver.

serializers[source]

Return serializer registry.

property label

Return human readable description of application. :rtype: str

property shortlabel

Return short description of application. :rtype: str

class faust.Channel(app: faust.types.app.AppT, *, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, is_iterator: bool = False, queue: mode.utils.queues.ThrowableQueue = None, maxsize: int = None, root: faust.types.channels.ChannelT = None, active_partitions: Set[faust.types.tuples.TP] = None, loop: asyncio.events.AbstractEventLoop = None) → None[source]

Create new channel.

Parameters
  • app (AppT[]) – The app that created this channel (app.channel())

  • key_type (Union[Type[ModelT], Type[bytes], Type[str], None]) – The Model used for keys in this channel.

  • value_type (Union[Type[ModelT], Type[bytes], Type[str], None]) – The Model used for values in this channel.

  • maxsize (Optional[int]) – The maximum number of messages this channel can hold. If exceeded any new put call will block until a message is removed from the channel.

  • is_iterator (bool) – When streams iterate over a channel they will call stream.clone(is_iterator=True) so this attribute denotes that this channel instance is currently being iterated over.

  • active_partition – Set of active topic partitions this channel instance is assigned to.

  • loop (Optional[AbstractEventLoop]) – The asyncio event loop to use.

property queue

Return the underlying queue/buffer backing this channel. :rtype: ThrowableQueue

clone(*, is_iterator: bool = None, **kwargs) → faust.types.channels.ChannelT[source]

Create clone of this channel.

Parameters

is_iterator (Optional[bool]) – Set to True if this is now a channel that is being iterated over.

Keyword Arguments

**kwargs – Any keyword arguments passed will override any of the arguments supported by Channel.__init__.

Return type

ChannelT[]

clone_using_queue(queue: asyncio.queues.Queue) → faust.types.channels.ChannelT[source]

Create clone of this channel using specific queue instance.

Return type

ChannelT[]

stream(**kwargs) → faust.types.streams.StreamT[source]

Create stream reading from this channel.

Return type

StreamT[+T_co]

get_topic_name() → str[source]

Get the topic name, or raise if this is not a named channel.

Return type

str

send_soon(*, key: Union[bytes, faust.types.core._ModelT, Any, None] = None, value: Union[bytes, faust.types.core._ModelT, Any] = None, partition: int = None, timestamp: float = None, headers: Union[List[Tuple[str, bytes]], Mapping[str, bytes]] = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, callback: Callable[faust.types.tuples.FutureMessage, Union[None, Awaitable[None]]] = None, force: bool = False) → faust.types.tuples.FutureMessage[source]

Produce message by adding to buffer.

This method is only supported by Topic.

Raises

NotImplementedError – always for in-memory channel.

Return type

FutureMessage[]

as_future_message(key: Union[bytes, faust.types.core._ModelT, Any, None] = None, value: Union[bytes, faust.types.core._ModelT, Any] = None, partition: int = None, timestamp: float = None, headers: Union[List[Tuple[str, bytes]], Mapping[str, bytes]] = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, callback: Callable[faust.types.tuples.FutureMessage, Union[None, Awaitable[None]]] = None) → faust.types.tuples.FutureMessage[source]

Create promise that message will be transmitted.

Return type

FutureMessage[]

prepare_headers(headers: Union[List[Tuple[str, bytes]], Mapping[str, bytes], None]) → Union[List[Tuple[str, bytes]], MutableMapping[str, bytes]][source]

Prepare headers passed before publishing.

Return type

Union[List[Tuple[str, bytes]], MutableMapping[str, bytes]]

maybe_declare[source]

Declare/create this channel, but only if it doesn’t exist. :rtype: None

prepare_key(key: Union[bytes, faust.types.core._ModelT, Any, None], key_serializer: Union[faust.types.codecs.CodecT, str, None]) → Any[source]

Prepare key before it is sent to this channel.

Topic uses this to implement serialization of keys sent to the channel.

Return type

Any

prepare_value(value: Union[bytes, faust.types.core._ModelT, Any], value_serializer: Union[faust.types.codecs.CodecT, str, None]) → Any[source]

Prepare value before it is sent to this channel.

Topic uses this to implement serialization of values sent to the channel.

Return type

Any

empty() → bool[source]

Return True if the queue is empty.

Return type

bool

on_stop_iteration() → None[source]

Signal that iteration over this channel was stopped.

Tip

Remember to call super when overriding this method.

Return type

None

derive(**kwargs) → faust.types.channels.ChannelT[source]

Derive new channel from this channel, using new configuration.

See faust.Topic.derive.

For local channels this will simply return the same channel.

Return type

ChannelT[]

property subscriber_count

Return number of active subscribers to local channel. :rtype: int

property label

Short textual description of channel. :rtype: str

class faust.ChannelT(app: faust.types.channels._AppT, *, key_type: faust.types.channels._ModelArg = None, value_type: faust.types.channels._ModelArg = None, is_iterator: bool = False, queue: mode.utils.queues.ThrowableQueue = None, maxsize: int = None, root: Optional[faust.types.channels.ChannelT] = None, active_partitions: Set[faust.types.tuples.TP] = None, loop: asyncio.events.AbstractEventLoop = None) → None[source]
abstract clone(*, is_iterator: bool = None, **kwargs) → faust.types.channels.ChannelT[source]
Return type

ChannelT[]

abstract clone_using_queue(queue: asyncio.queues.Queue) → faust.types.channels.ChannelT[source]
Return type

ChannelT[]

abstract stream(**kwargs) → faust.types.channels._StreamT[source]
Return type

_StreamT

abstract get_topic_name() → str[source]
Return type

str

abstract send_soon(*, key: Union[bytes, faust.types.core._ModelT, Any, None] = None, value: Union[bytes, faust.types.core._ModelT, Any] = None, partition: int = None, timestamp: float = None, headers: Union[List[Tuple[str, bytes]], Mapping[str, bytes]] = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, callback: Callable[faust.types.tuples.FutureMessage, Union[None, Awaitable[None]]] = None, force: bool = False) → faust.types.tuples.FutureMessage[source]
Return type

FutureMessage[]

abstract as_future_message(key: Union[bytes, faust.types.core._ModelT, Any, None] = None, value: Union[bytes, faust.types.core._ModelT, Any] = None, partition: int = None, timestamp: float = None, headers: Union[List[Tuple[str, bytes]], Mapping[str, bytes]] = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, callback: Callable[faust.types.tuples.FutureMessage, Union[None, Awaitable[None]]] = None) → faust.types.tuples.FutureMessage[source]
Return type

FutureMessage[]

maybe_declare[source]
Return type

None

abstract prepare_key(key: Union[bytes, faust.types.core._ModelT, Any, None], key_serializer: Union[faust.types.codecs.CodecT, str, None]) → Any[source]
Return type

Any

abstract prepare_value(value: Union[bytes, faust.types.core._ModelT, Any], value_serializer: Union[faust.types.codecs.CodecT, str, None]) → Any[source]
Return type

Any

abstract empty() → bool[source]
Return type

bool

abstract on_stop_iteration() → None[source]
Return type

None

abstract derive(**kwargs) → faust.types.channels.ChannelT[source]
Return type

ChannelT[]

abstract property subscriber_count
Return type

int

abstract property queue
Return type

ThrowableQueue

class faust.Event(app: faust.types.app.AppT, key: Union[bytes, faust.types.core._ModelT, Any, None], value: Union[bytes, faust.types.core._ModelT, Any], headers: Union[List[Tuple[str, bytes]], Mapping[str, bytes], None], message: faust.types.tuples.Message) → None[source]

An event received on a channel.

Notes

  • Events have a key and a value:

    event.key, event.value
    
  • They also have a reference to the original message (if available), such as a Kafka record:

    event.message.offset

  • Iterating over channels/topics yields Event:

    async for event in channel:

  • Iterating over a stream (that in turn iterate over channel) yields Event.value:

    async for value in channel.stream()  # value is event.value
        ...
    
  • If you only have a Stream object, you can also access underlying events by using Stream.events.

    For example:

    async for event in channel.stream.events():
        ...
    

    Also commonly used for finding the “current event” related to a value in the stream:

    stream = channel.stream()
    async for event in stream.events():
        event = stream.current_event
        message = event.message
        topic = event.message.topic
    

    You can retrieve the current event in a stream to:

    • Get access to the serialized key+value.

    • Get access to message properties like, what topic+partition the value was received on, or its offset.

    If you want access to both key and value, you should use stream.items() instead.

    async for key, value in stream.items():
        ...
    

    stream.current_event can also be accessed but you must take extreme care you are using the correct stream object. Methods such as .group_by(key) and .through(topic) returns cloned stream objects, so in the example:

    The best way to access the current_event in an agent is to use the ContextVar:

    from faust import current_event
    
    @app.agent(topic)
    async def process(stream):
        async for value in stream:
            event = current_event()
    
app
key
value
message
headers
acked
ack() → bool[source]

Acknowledge event as being processed by stream.

When the last stream processor acks the message, the offset in the source topic will be marked as safe-to-commit, and the worker will commit and advance the committed offset.

Return type

bool

class faust.EventT(app: faust.types.events._AppT, key: Union[bytes, faust.types.core._ModelT, Any, None], value: Union[bytes, faust.types.core._ModelT, Any], headers: Union[List[Tuple[str, bytes]], Mapping[str, bytes], None], message: faust.types.tuples.Message) → None[source]
app
key
value
headers
message
acked
abstract ack() → bool[source]
Return type

bool

class faust.ModelOptions(*args, **kwargs)[source]
serializer = None
include_metadata = True
polymorphic_fields = False
allow_blessed_key = False
isodates = False
decimals = False
validation = False
coerce = False
coercions = None
date_parser = None
fields = None

Flattened view of __annotations__ in MRO order.

Type

Index

fieldset = None

Set of required field names, for fast argument checking.

Type

Index

descriptors = None

Mapping of field name to field descriptor.

Type

Index

fieldpos = None

Positional argument index to field name. Used by Record.__init__ to map positional arguments to fields.

Type

Index

optionalset = None

Set of optional field names, for fast argument checking.

Type

Index

models = None

Mapping of fields that are ModelT

Type

Index

modelattrs = None
field_coerce = None

Mapping of fields that need to be coerced. Key is the name of the field, value is the coercion handler function.

Type

Index

defaults = None

Mapping of field names to default value.

initfield = None

Mapping of init field conversion callbacks.

polyindex = None

Index of field to polymorphic type

clone_defaults() → faust.types.models.ModelOptions[source]
Return type

ModelOptions

class faust.Record → None[source]

Describes a model type that is a record (Mapping).

Examples

>>> class LogEvent(Record, serializer='json'):
...     severity: str
...     message: str
...     timestamp: float
...     optional_field: str = 'default value'
>>> event = LogEvent(
...     severity='error',
...     message='Broken pact',
...     timestamp=666.0,
... )
>>> event.severity
'error'
>>> serialized = event.dumps()
'{"severity": "error", "message": "Broken pact", "timestamp": 666.0}'
>>> restored = LogEvent.loads(serialized)
<LogEvent: severity='error', message='Broken pact', timestamp=666.0>
>>> # You can also subclass a Record to create a new record
>>> # with additional fields
>>> class RemoteLogEvent(LogEvent):
...     url: str
>>> # You can also refer to record fields and pass them around:
>>> LogEvent.severity
>>> <FieldDescriptor: LogEvent.severity (str)>
classmethod from_data(data: Mapping, *, preferred_type: Type[faust.types.models.ModelT] = None) → faust.models.record.Record[source]

Create model object from Python dictionary.

Return type

Record

to_representation() → Mapping[str, Any][source]

Convert model to its Python generic counterpart.

Records will be converted to dictionary.

Return type

Mapping[str, Any]

asdict() → Dict[str, Any][source]

Convert record to Python dictionary.

Return type

Dict[str, Any]

class faust.Monitor(*, max_avg_history: int = None, max_commit_latency_history: int = None, max_send_latency_history: int = None, max_assignment_latency_history: int = None, messages_sent: int = 0, tables: MutableMapping[str, faust.sensors.monitor.TableState] = None, messages_active: int = 0, events_active: int = 0, messages_received_total: int = 0, messages_received_by_topic: Counter[str] = None, events_total: int = 0, events_by_stream: Counter[faust.types.streams.StreamT] = None, events_by_task: Counter[_asyncio.Task] = None, events_runtime: Deque[float] = None, commit_latency: Deque[float] = None, send_latency: Deque[float] = None, assignment_latency: Deque[float] = None, events_s: int = 0, messages_s: int = 0, events_runtime_avg: float = 0.0, topic_buffer_full: Counter[faust.types.topics.TopicT] = None, rebalances: int = None, rebalance_return_latency: Deque[float] = None, rebalance_end_latency: Deque[float] = None, rebalance_return_avg: float = 0.0, rebalance_end_avg: float = 0.0, time: Callable[float] = <built-in function monotonic>, **kwargs) → None[source]

Default Faust Sensor.

This is the default sensor, recording statistics about events, etc.

send_errors = 0

Number of produce operations that ended in error.

assignments_completed = 0

Number of partition assignments completed.

assignments_failed = 0

Number of partitions assignments that failed.

max_avg_history = 100

Max number of total run time values to keep to build average.

max_commit_latency_history = 30

Max number of commit latency numbers to keep.

max_send_latency_history = 30

Max number of send latency numbers to keep.

max_assignment_latency_history = 30

Max number of assignment latency numbers to keep.

rebalances = 0

Number of rebalances seen by this worker.

tables = None

Mapping of tables

commit_latency = None

Deque of commit latency values

send_latency = None

Deque of send latency values

assignment_latency = None

Deque of assignment latency values.

rebalance_return_latency = None

Deque of previous n rebalance return latencies.

rebalance_end_latency = None

Deque of previous n rebalance end latencies.

rebalance_return_avg = 0.0

Average rebalance return latency.

rebalance_end_avg = 0.0

Average rebalance end latency.

messages_active = 0

Number of messages currently being processed.

messages_received_total = 0

Number of messages processed in total.

messages_received_by_topic = None

Count of messages received by topic

messages_sent = 0

Number of messages sent in total.

messages_sent_by_topic = None

Number of messages sent by topic.

messages_s = 0

Number of messages being processed this second.

events_active = 0

Number of events currently being processed.

events_total = 0

Number of events processed in total.

events_by_task = None

Count of events processed by task

events_by_stream = None

Count of events processed by stream

events_s = 0

Number of events being processed this second.

events_runtime_avg = 0.0

Average event runtime over the last second.

events_runtime = None

Deque of run times used for averages

topic_buffer_full = None

Counter of times a topics buffer was full

metric_counts = None

Arbitrary counts added by apps

tp_committed_offsets = None

Last committed offsets by TopicPartition

tp_read_offsets = None

Last read offsets by TopicPartition

tp_end_offsets = None

Log end offsets by TopicPartition

secs_since(start_time: float) → float[source]

Given timestamp start, return number of seconds since that time.

Return type

float

ms_since(start_time: float) → float[source]

Given timestamp start, return number of ms since that time.

Return type

float

logger = <Logger faust.sensors.monitor (WARNING)>
secs_to_ms(timestamp: float) → float[source]

Convert seconds to milliseconds.

Return type

float

asdict() → Mapping[source]

Return monitor state as dictionary.

Return type

Mapping[~KT, +VT_co]

on_message_in(tp: faust.types.tuples.TP, offset: int, message: faust.types.tuples.Message) → None[source]

Call before message is delegated to streams.

Return type

None

on_stream_event_in(tp: faust.types.tuples.TP, offset: int, stream: faust.types.streams.StreamT, event: faust.types.events.EventT) → Optional[Dict][source]

Call when stream starts processing an event.

Return type

Optional[Dict[~KT, ~VT]]

on_stream_event_out(tp: faust.types.tuples.TP, offset: int, stream: faust.types.streams.StreamT, event: faust.types.events.EventT, state: Dict = None) → None[source]

Call when stream is done processing an event.

Return type

None

on_topic_buffer_full(topic: faust.types.topics.TopicT) → None[source]

Call when conductor topic buffer is full and has to wait.

Return type

None

on_message_out(tp: faust.types.tuples.TP, offset: int, message: faust.types.tuples.Message) → None[source]

Call when message is fully acknowledged and can be committed.

Return type

None

on_table_get(table: faust.types.tables.CollectionT, key: Any) → None[source]

Call when value in table is retrieved.

Return type

None

on_table_set(table: faust.types.tables.CollectionT, key: Any, value: Any) → None[source]

Call when new value for key in table is set.

Return type

None

on_table_del(table: faust.types.tables.CollectionT, key: Any) → None[source]

Call when key in a table is deleted.

Return type

None

on_commit_initiated(consumer: faust.types.transports.ConsumerT) → Any[source]

Consumer is about to commit topic offset.

Return type

Any

on_commit_completed(consumer: faust.types.transports.ConsumerT, state: Any) → None[source]

Call when consumer commit offset operation completed.

Return type

None

on_send_initiated(producer: faust.types.transports.ProducerT, topic: str, message: faust.types.tuples.PendingMessage, keysize: int, valsize: int) → Any[source]

Call when message added to producer buffer.

Return type

Any

on_send_completed(producer: faust.types.transports.ProducerT, state: Any, metadata: faust.types.tuples.RecordMetadata) → None[source]

Call when producer finished sending message.

Return type

None

on_send_error(producer: faust.types.transports.ProducerT, exc: BaseException, state: Any) → None[source]

Call when producer was unable to publish message.

Return type

None

count(metric_name: str, count: int = 1) → None[source]

Count metric by name.

Return type

None

on_tp_commit(tp_offsets: MutableMapping[faust.types.tuples.TP, int]) → None[source]

Call when offset in topic partition is committed.

Return type

None

track_tp_end_offset(tp: faust.types.tuples.TP, offset: int) → None[source]

Track new topic partition end offset for monitoring lags.

Return type

None

on_assignment_start(assignor: faust.types.assignor.PartitionAssignorT) → Dict[source]

Partition assignor is starting to assign partitions.

Return type

Dict[~KT, ~VT]

on_assignment_error(assignor: faust.types.assignor.PartitionAssignorT, state: Dict, exc: BaseException) → None[source]

Partition assignor did not complete assignor due to error.

Return type

None

on_assignment_completed(assignor: faust.types.assignor.PartitionAssignorT, state: Dict) → None[source]

Partition assignor completed assignment.

Return type

None

on_rebalance_start(app: faust.types.app.AppT) → Dict[source]

Cluster rebalance in progress.

Return type

Dict[~KT, ~VT]

on_rebalance_return(app: faust.types.app.AppT, state: Dict) → None[source]

Consumer replied assignment is done to broker.

Return type

None

on_rebalance_end(app: faust.types.app.AppT, state: Dict) → None[source]

Cluster rebalance fully completed (including recovery).

Return type

None

class faust.Sensor(*, beacon: mode.utils.types.trees.NodeT = None, loop: asyncio.events.AbstractEventLoop = None) → None[source]

Base class for sensors.

This sensor does not do anything at all, but can be subclassed to create new monitors.

on_message_in(tp: faust.types.tuples.TP, offset: int, message: faust.types.tuples.Message) → None[source]

Message received by a consumer.

Return type

None

on_stream_event_in(tp: faust.types.tuples.TP, offset: int, stream: faust.types.streams.StreamT, event: faust.types.events.EventT) → Optional[Dict][source]

Message sent to a stream as an event.

Return type

Optional[Dict[~KT, ~VT]]

on_stream_event_out(tp: faust.types.tuples.TP, offset: int, stream: faust.types.streams.StreamT, event: faust.types.events.EventT, state: Dict = None) → None[source]

Event was acknowledged by stream.

Notes

Acknowledged means a stream finished processing the event, but given that multiple streams may be handling the same event, the message cannot be committed before all streams have processed it. When all streams have acknowledged the event, it will go through on_message_out() just before offsets are committed.

Return type

None

on_message_out(tp: faust.types.tuples.TP, offset: int, message: faust.types.tuples.Message) → None[source]

All streams finished processing message.

Return type

None

on_topic_buffer_full(topic: faust.types.topics.TopicT) → None[source]

Topic buffer full so conductor had to wait.

Return type

None

on_table_get(table: faust.types.tables.CollectionT, key: Any) → None[source]

Key retrieved from table.

Return type

None

on_table_set(table: faust.types.tables.CollectionT, key: Any, value: Any) → None[source]

Value set for key in table.

Return type

None

on_table_del(table: faust.types.tables.CollectionT, key: Any) → None[source]

Key deleted from table.

Return type

None

on_commit_initiated(consumer: faust.types.transports.ConsumerT) → Any[source]

Consumer is about to commit topic offset.

Return type

Any

on_commit_completed(consumer: faust.types.transports.ConsumerT, state: Any) → None[source]

Consumer finished committing topic offset.

Return type

None

on_send_initiated(producer: faust.types.transports.ProducerT, topic: str, message: faust.types.tuples.PendingMessage, keysize: int, valsize: int) → Any[source]

About to send a message.

Return type

Any

on_send_completed(producer: faust.types.transports.ProducerT, state: Any, metadata: faust.types.tuples.RecordMetadata) → None[source]

Message successfully sent.

Return type

None

on_send_error(producer: faust.types.transports.ProducerT, exc: BaseException, state: Any) → None[source]

Error while sending message.

Return type

None

on_assignment_start(assignor: faust.types.assignor.PartitionAssignorT) → Dict[source]

Partition assignor is starting to assign partitions.

Return type

Dict[~KT, ~VT]

on_assignment_error(assignor: faust.types.assignor.PartitionAssignorT, state: Dict, exc: BaseException) → None[source]

Partition assignor did not complete assignor due to error.

Return type

None

on_assignment_completed(assignor: faust.types.assignor.PartitionAssignorT, state: Dict) → None[source]

Partition assignor completed assignment.

Return type

None

on_rebalance_start(app: faust.types.app.AppT) → Dict[source]

Cluster rebalance in progress.

Return type

Dict[~KT, ~VT]

on_rebalance_return(app: faust.types.app.AppT, state: Dict) → None[source]

Consumer replied assignment is done to broker.

Return type

None

on_rebalance_end(app: faust.types.app.AppT, state: Dict) → None[source]

Cluster rebalance fully completed (including recovery).

Return type

None

asdict() → Mapping[source]

Convert sensor state to dictionary.

Return type

Mapping[~KT, +VT_co]

logger = <Logger faust.sensors.base (WARNING)>
class faust.Codec(children: Tuple[faust.types.codecs.CodecT, ...] = None, **kwargs) → None[source]

Base class for codecs.

children = None

next steps in the recursive codec chain. x = pickle | binary returns codec with children set to (pickle, binary).

nodes = None

cached version of children including this codec as the first node. could use chain below, but seems premature so just copying the list.

kwargs = None

subclasses can support keyword arguments, the base implementation of clone() uses this to preserve keyword arguments in copies.

dumps(obj: Any) → bytes[source]

Encode object obj.

Return type

bytes

loads(s: bytes) → Any[source]

Decode object from string.

Return type

Any

clone(*children) → faust.types.codecs.CodecT[source]

Create a clone of this codec, with optional children added.

Return type

CodecT

class faust.Stream(channel: AsyncIterator[T_co], *, app: faust.types.app.AppT, processors: Iterable[Callable[T]] = None, combined: List[faust.types.streams.JoinableT] = None, on_start: Callable = None, join_strategy: faust.types.joins.JoinT = None, beacon: mode.utils.types.trees.NodeT = None, concurrency_index: int = None, prev: faust.types.streams.StreamT = None, active_partitions: Set[faust.types.tuples.TP] = None, enable_acks: bool = True, prefix: str = '', loop: asyncio.events.AbstractEventLoop = None) → None[source]

A stream: async iterator processing events in channels/topics.

logger = <Logger faust.streams (WARNING)>
mundane_level = 'debug'
get_active_stream() → faust.types.streams.StreamT[source]

Return the currently active stream.

A stream can be derived using Stream.group_by etc, so if this stream was used to create another derived stream, this function will return the stream being actively consumed from. E.g. in the example:

>>> @app.agent()
... async def agent(a):
..      a = a
...     b = a.group_by(Withdrawal.account_id)
...     c = b.through('backup_topic')
...     async for value in c:
...         ...

The return value of a.get_active_stream() would be c.

Notes

The chain of streams that leads to the active stream is decided by the _next attribute. To get to the active stream we just traverse this linked-list:

>>> def get_active_stream(self):
...     node = self
...     while node._next:
...         node = node._next
Return type

StreamT[+T_co]

get_root_stream() → faust.types.streams.StreamT[source]

Get the root stream that this stream was derived from.

Return type

StreamT[+T_co]

add_processor(processor: Callable[T]) → None[source]

Add processor callback executed whenever a new event is received.

Processor functions can be async or non-async, must accept a single argument, and should return the value, mutated or not.

For example a processor handling a stream of numbers may modify the value:

def double(value: int) -> int:
    return value * 2

stream.add_processor(double)
Return type

None

info() → Mapping[str, Any][source]

Return stream settings as a dictionary.

Return type

Mapping[str, Any]

clone(**kwargs) → faust.types.streams.StreamT[source]

Create a clone of this stream.

Notes

If the cloned stream is supposed to supersede this stream, like in group_by/through/etc., you should use _chain() instead so stream._next = cloned_stream is set and get_active_stream() returns the cloned stream.

Return type

StreamT[+T_co]

noack() → faust.types.streams.StreamT[source]

Create new stream where acks are manual.

Return type

StreamT[+T_co]

items() → AsyncIterator[Tuple[Union[bytes, faust.types.core._ModelT, Any, None], T_co]][source]

Iterate over the stream as key, value pairs.

Examples

@app.agent(topic)
async def mytask(stream):
    async for key, value in stream.items():
        print(key, value)
Return type

AsyncIterator[Tuple[Union[bytes, _ModelT, Any, None], +T_co]]

events() → AsyncIterable[faust.types.events.EventT][source]

Iterate over the stream as events exclusively.

This means the stream must be iterating over a channel, or at least an iterable of event objects.

Return type

AsyncIterable[EventT[]]

take(max_: int, within: Union[datetime.timedelta, float, str]) → AsyncIterable[Sequence[T_co]][source]

Buffer n values at a time and yield a list of buffered values.

Parameters

within (Union[timedelta, float, str]) – Timeout for when we give up waiting for another value, and process the values we have. Warning: If there’s no timeout (i.e. timeout=None), the agent is likely to stall and block buffered events for an unreasonable length of time(!).

Return type

AsyncIterable[Sequence[+T_co]]

enumerate(start: int = 0) → AsyncIterable[Tuple[int, T_co]][source]

Enumerate values received on this stream.

Unlike Python’s built-in enumerate, this works with async generators.

Return type

AsyncIterable[Tuple[int, +T_co]]

through(channel: Union[str, faust.types.channels.ChannelT]) → faust.types.streams.StreamT[source]

Forward values to in this stream to channel.

Send messages received on this stream to another channel, and return a new stream that consumes from that channel.

Notes

The messages are forwarded after any processors have been applied.

Example

topic = app.topic('foo')

@app.agent(topic)
async def mytask(stream):
    async for value in stream.through(app.topic('bar')):
        # value was first received in topic 'foo',
        # then forwarded and consumed from topic 'bar'
        print(value)
Return type

StreamT[+T_co]

echo(*channels) → faust.types.streams.StreamT[source]

Forward values to one or more channels.

Unlike through(), we don’t consume from these channels.

Return type

StreamT[+T_co]

group_by(key: Union[faust.types.models.FieldDescriptorT, Callable[T, Union[bytes, faust.types.core._ModelT, Any, None]]], *, name: str = None, topic: faust.types.topics.TopicT = None, partitions: int = None) → faust.types.streams.StreamT[source]

Create new stream that repartitions the stream using a new key.

Parameters
  • key (Union[FieldDescriptorT[~T], Callable[[~T], Union[bytes, _ModelT, Any, None]]]) –

    The key argument decides how the new key is generated, it can be a field descriptor, a callable, or an async callable.

    Note: The name argument must be provided if the key

    argument is a callable.

  • name (Optional[str]) – Suffix to use for repartitioned topics. This argument is required if key is a callable.

Examples

Using a field descriptor to use a field in the event as the new key:

s = withdrawals_topic.stream()
# values in this stream are of type Withdrawal
async for event in s.group_by(Withdrawal.account_id):
    ...

Using an async callable to extract a new key:

s = withdrawals_topic.stream()

async def get_key(withdrawal):
    return await aiohttp.get(
        f'http://e.com/resolve_account/{withdrawal.account_id}')

async for event in s.group_by(get_key):
    ...

Using a regular callable to extract a new key:

s = withdrawals_topic.stream()

def get_key(withdrawal):
    return withdrawal.account_id.upper()

async for event in s.group_by(get_key):
    ...
Return type

StreamT[+T_co]

filter(fun: Callable[T]) → faust.types.streams.StreamT[source]

Filter values from stream using callback.

The callback may be a traditional function, lambda function, or an async def function.

This method is useful for filtering events before repartitioning a stream.

Examples

>>> async for v in stream.filter(lambda: v > 1000).group_by(...):
...     # do something
Return type

StreamT[+T_co]

derive_topic(name: str, *, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, prefix: str = '', suffix: str = '') → faust.types.topics.TopicT[source]

Create Topic description derived from the K/V type of this stream.

Parameters
  • name (str) – Topic name.

  • key_type (Union[Type[ModelT], Type[bytes], Type[str], None]) – Specific key type to use for this topic. If not set, the key type of this stream will be used.

  • value_type (Union[Type[ModelT], Type[bytes], Type[str], None]) – Specific value type to use for this topic. If not set, the value type of this stream will be used.

Raises

ValueError – if the stream channel is not a topic.

Return type

TopicT[]

combine(*nodes, **kwargs) → faust.types.streams.StreamT[source]

Combine streams and tables into joined stream.

Return type

StreamT[+T_co]

contribute_to_stream(active: faust.types.streams.StreamT) → None[source]

Add stream as node in joined stream.

Return type

None

join(*fields) → faust.types.streams.StreamT[source]

Create stream where events are joined.

Return type

StreamT[+T_co]

left_join(*fields) → faust.types.streams.StreamT[source]

Create stream where events are joined by LEFT JOIN.

Return type

StreamT[+T_co]

inner_join(*fields) → faust.types.streams.StreamT[source]

Create stream where events are joined by INNER JOIN.

Return type

StreamT[+T_co]

outer_join(*fields) → faust.types.streams.StreamT[source]

Create stream where events are joined by OUTER JOIN.

Return type

StreamT[+T_co]

property label

Return description of stream, used in graphs and logs. :rtype: str

shortlabel[source]

Return short description of stream.

class faust.StreamT(channel: AsyncIterator[T_co] = None, *, app: faust.types.streams._AppT = None, processors: Iterable[Callable[T]] = None, combined: List[faust.types.streams.JoinableT] = None, on_start: Callable = None, join_strategy: faust.types.streams._JoinT = None, beacon: mode.utils.types.trees.NodeT = None, concurrency_index: int = None, prev: Optional[faust.types.streams.StreamT] = None, active_partitions: Set[faust.types.tuples.TP] = None, enable_acks: bool = True, prefix: str = '', loop: asyncio.events.AbstractEventLoop = None) → None[source]
outbox = None
join_strategy = None
task_owner = None
current_event = None
active_partitions = None
concurrency_index = None
enable_acks = True
prefix = ''
abstract get_active_stream() → faust.types.streams.StreamT[source]
Return type

StreamT[+T_co]

abstract add_processor(processor: Callable[T]) → None[source]
Return type

None

abstract info() → Mapping[str, Any][source]
Return type

Mapping[str, Any]

abstract clone(**kwargs) → faust.types.streams.StreamT[source]
Return type

StreamT[+T_co]

abstract enumerate(start: int = 0) → AsyncIterable[Tuple[int, T_co]][source]
Return type

AsyncIterable[Tuple[int, +T_co]]

abstract through(channel: Union[str, faust.types.channels.ChannelT]) → faust.types.streams.StreamT[source]
Return type

StreamT[+T_co]

abstract echo(*channels) → faust.types.streams.StreamT[source]
Return type

StreamT[+T_co]

abstract group_by(key: Union[faust.types.models.FieldDescriptorT, Callable[T, Union[bytes, faust.types.core._ModelT, Any, None]]], *, name: str = None, topic: faust.types.topics.TopicT = None) → faust.types.streams.StreamT[source]
Return type

StreamT[+T_co]

abstract derive_topic(name: str, *, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, prefix: str = '', suffix: str = '') → faust.types.topics.TopicT[source]
Return type

TopicT[]

faust.current_event() → Optional[faust.types.events.EventT][source]

Return the event currently being processed, or None.

Return type

Optional[EventT[]]

class faust.SetTable(app: faust.types.app.AppT, *, start_manager: bool = False, manager_topic_name: str = None, manager_topic_suffix: str = None, **kwargs) → None[source]

Table that maintains a dictionary of sets.

Manager

alias of SetTableManager

WindowWrapper

alias of SetWindowWrapper

logger = <Logger faust.tables.sets (WARNING)>
manager_topic_suffix = '-setmanager'
class faust.Table(app: faust.types.app.AppT, *, name: str = None, default: Callable[Any] = None, store: Union[str, yarl.URL] = None, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, partitions: int = None, window: faust.types.windows.WindowT = None, changelog_topic: faust.types.topics.TopicT = None, help: str = None, on_recover: Callable[Awaitable[None]] = None, on_changelog_event: Callable[faust.types.events.EventT, Awaitable[None]] = None, recovery_buffer_size: int = 1000, standby_buffer_size: int = None, extra_topic_configs: Mapping[str, Any] = None, recover_callbacks: Set[Callable[Awaitable[None]]] = None, options: Mapping[str, Any] = None, **kwargs) → None[source]

Table (non-windowed).

class WindowWrapper(table: faust.types.tables.TableT, *, relative_to: Union[faust.types.tables._FieldDescriptorT, Callable[Optional[faust.types.events.EventT], Union[float, datetime.datetime]], datetime.datetime, float, None] = None, key_index: bool = False, key_index_table: faust.types.tables.TableT = None) → None

Windowed table wrapper.

A windowed table does not return concrete values when keys are accessed, instead WindowSet is returned so that the values can be further reduced to the wanted time period.

ValueType

alias of WindowSet

as_ansitable(title: str = '{table.name}', **kwargs) → str

Draw table as a terminal ANSI table.

Return type

str

clone(relative_to: Union[faust.types.tables._FieldDescriptorT, Callable[Optional[faust.types.events.EventT], Union[float, datetime.datetime]], datetime.datetime, float, None]) → faust.types.tables.WindowWrapperT

Clone this table using a new time-relativity configuration.

Return type

WindowWrapperT[]

property get_relative_timestamp

Return the current handler for extracting event timestamp. :rtype: Optional[Callable[[Optional[EventT[]]], Union[float, datetime]]]

get_timestamp(event: faust.types.events.EventT = None) → float

Get timestamp from event.

Return type

float

items(event: faust.types.events.EventT = None) → ItemsView

Return table items view: iterate over (key, value) pairs.

Return type

ItemsView[~KT, +VT_co]

key_index = False
key_index_table = None
keys() → KeysView

Return table keys view: iterate over keys found in this table.

Return type

KeysView[~KT]

property name

Return the name of this table. :rtype: str

on_del_key(key: Any) → None

Call when a key is deleted from this table.

Return type

None

on_recover(fun: Callable[Awaitable[None]]) → Callable[Awaitable[None]]

Call after table recovery.

Return type

Callable[[], Awaitable[None]]

on_set_key(key: Any, value: Any) → None

Call when the value for a key in this table is set.

Return type

None

relative_to(ts: Union[faust.types.tables._FieldDescriptorT, Callable[Optional[faust.types.events.EventT], Union[float, datetime.datetime]], datetime.datetime, float, None]) → faust.types.tables.WindowWrapperT

Configure the time-relativity of this windowed table.

Return type

WindowWrapperT[]

relative_to_field(field: faust.types.models.FieldDescriptorT) → faust.types.tables.WindowWrapperT

Configure table to be time-relative to a field in the stream.

This means the window will use the timestamp from the event currently being processed in the stream.

Further it will not use the timestamp of the Kafka message, but a field in the value of the event.

For example a model field:

class Account(faust.Record):
    created: float

table = app.Table('foo').hopping(
    ...,
).relative_to_field(Account.created)
Return type

WindowWrapperT[]

relative_to_now() → faust.types.tables.WindowWrapperT

Configure table to be time-relative to the system clock.

Return type

WindowWrapperT[]

relative_to_stream() → faust.types.tables.WindowWrapperT

Configure table to be time-relative to the stream.

This means the window will use the timestamp from the event currently being processed in the stream.

Return type

WindowWrapperT[]

values(event: faust.types.events.EventT = None) → ValuesView

Return table values view: iterate over values in this table.

Return type

ValuesView[+VT_co]

using_window(window: faust.types.windows.WindowT, *, key_index: bool = False) → faust.types.tables.WindowWrapperT[source]

Wrap table using a specific window type.

Return type

WindowWrapperT[]

hopping(size: Union[datetime.timedelta, float, str], step: Union[datetime.timedelta, float, str], expires: Union[datetime.timedelta, float, str] = None, key_index: bool = False) → faust.types.tables.WindowWrapperT[source]

Wrap table in a hopping window.

Return type

WindowWrapperT[]

tumbling(size: Union[datetime.timedelta, float, str], expires: Union[datetime.timedelta, float, str] = None, key_index: bool = False) → faust.types.tables.WindowWrapperT[source]

Wrap table in a tumbling window.

Return type

WindowWrapperT[]

on_key_get(key: KT) → None[source]

Call when the value for a key in this table is retrieved.

Return type

None

on_key_set(key: KT, value: VT) → None[source]

Call when the value for a key in this table is set.

Return type

None

on_key_del(key: KT) → None[source]

Call when a key in this table is removed.

Return type

None

as_ansitable(title: str = '{table.name}', **kwargs) → str[source]

Draw table as a a terminal ANSI table.

Return type

str

logger = <Logger faust.tables.table (WARNING)>
class faust.Topic(app: faust.types.app.AppT, *, topics: Sequence[str] = None, pattern: Union[str, Pattern[~AnyStr]] = None, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, is_iterator: bool = False, partitions: int = None, retention: Union[datetime.timedelta, float, str] = None, compacting: bool = None, deleting: bool = None, replicas: int = None, acks: bool = True, internal: bool = False, config: Mapping[str, Any] = None, queue: mode.utils.queues.ThrowableQueue = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, maxsize: int = None, root: faust.types.channels.ChannelT = None, active_partitions: Set[faust.types.tuples.TP] = None, allow_empty: bool = False, loop: asyncio.events.AbstractEventLoop = None) → None[source]

Define new topic description.

Parameters
  • app (AppT[]) – App instance used to create this topic description.

  • topics (Optional[Sequence[str]]) – List of topic names.

  • partitions (Optional[int]) – Number of partitions for these topics. On declaration, topics are created using this. Note: If a message is produced before the topic is declared, and autoCreateTopics is enabled on the Kafka Server, the number of partitions used will be specified by the server configuration.

  • retention (Union[timedelta, float, str, None]) – Number of seconds (as float/timedelta) to keep messages in the topic before they can be expired by the server.

  • pattern (Union[str, Pattern[AnyStr], None]) – Regular expression evaluated to decide what topics to subscribe to. You cannot specify both topics and a pattern.

  • key_type (Union[Type[ModelT], Type[bytes], Type[str], None]) – How to deserialize keys for messages in this topic. Can be a faust.Model type, str, bytes, or None for “autodetect”

  • value_type (Union[Type[ModelT], Type[bytes], Type[str], None]) – How to deserialize values for messages in this topic. Can be a faust.Model type, str, bytes, or None for “autodetect”

  • active_partitions (Optional[Set[TP]]) – Set of faust.types.tuples.TP that this topic should be restricted to.

Raises

TypeError – if both topics and pattern is provided.

send_soon(*, key: Union[bytes, faust.types.core._ModelT, Any, None] = None, value: Union[bytes, faust.types.core._ModelT, Any] = None, partition: int = None, timestamp: float = None, headers: Union[List[Tuple[str, bytes]], Mapping[str, bytes]] = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, callback: Callable[faust.types.tuples.FutureMessage, Union[None, Awaitable[None]]] = None, force: bool = False) → faust.types.tuples.FutureMessage[source]

Produce message by adding to buffer.

Notes

This method can be used by non-async def functions to produce messages.

Return type

FutureMessage[]

property pattern

Regular expression used by this topic (if any). :rtype: Optional[Pattern[AnyStr]]

property partitions

Return the number of configured partitions for this topic.

Notes

This is only active for internal topics, fully owned and managed by Faust itself.

We never touch the configuration of a topic that exists in Kafka, and Kafka will sometimes automatically create topics when they don’t exist. In this case the number of partitions for the automatically created topic will depend on the Kafka server configuration (num.partitions).

Always make sure your topics have the correct number of partitions. :rtype: Optional[int]

derive(**kwargs) → faust.types.channels.ChannelT[source]

Create topic derived from the configuration of this topic.

Configuration will be copied from this topic, but any parameter overridden as a keyword argument.

See also

derive_topic(): for a list of supported keyword arguments.

Return type

ChannelT[]

derive_topic(*, topics: Sequence[str] = None, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, partitions: int = None, retention: Union[datetime.timedelta, float, str] = None, compacting: bool = None, deleting: bool = None, internal: bool = None, config: Mapping[str, Any] = None, prefix: str = '', suffix: str = '', **kwargs) → faust.types.topics.TopicT[source]

Create new topic with configuration derived from this topic.

Return type

TopicT[]

get_topic_name() → str[source]

Return the main topic name of this topic description.

As topic descriptions can have multiple topic names, this will only return when the topic has a singular topic name in the description.

Raises
  • TypeError – if configured with a regular expression pattern.

  • ValueError – if configured with multiple topic names.

  • TypeError – if not configured with any names or patterns.

Return type

str

prepare_key(key: Union[bytes, faust.types.core._ModelT, Any, None], key_serializer: Union[faust.types.codecs.CodecT, str, None]) → Any[source]

Serialize key to format suitable for transport.

Return type

Any

prepare_value(value: Union[bytes, faust.types.core._ModelT, Any], value_serializer: Union[faust.types.codecs.CodecT, str, None]) → Any[source]

Serialize value to format suitable for transport.

Return type

Any

maybe_declare[source]

Declare/create this topic, only if it does not exist. :rtype: None

class faust.TopicT(app: faust.types.topics._AppT, *, topics: Sequence[str] = None, pattern: Union[str, Pattern[~AnyStr]] = None, key_type: faust.types.topics._ModelArg = None, value_type: faust.types.topics._ModelArg = None, is_iterator: bool = False, partitions: int = None, retention: Union[datetime.timedelta, float, str] = None, compacting: bool = None, deleting: bool = None, replicas: int = None, acks: bool = True, internal: bool = False, config: Mapping[str, Any] = None, queue: mode.utils.queues.ThrowableQueue = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, maxsize: int = None, root: faust.types.channels.ChannelT = None, active_partitions: Set[faust.types.tuples.TP] = None, allow_empty: bool = False, loop: asyncio.events.AbstractEventLoop = None) → None[source]
topics = None

Iterable/Sequence of topic names to subscribe to.

retention = None

expiry time in seconds for messages in the topic.

Type

Topic retention setting

compacting = None

Flag that when enabled means the topic can be “compacted”: if the topic is a log of key/value pairs, the broker can delete old values for the same key.

replicas = None

Number of replicas for topic.

config = None

Additional configuration as a mapping.

acks = None

Enable acks for this topic.

internal = None

it’s owned by us and we are allowed to create or delete the topic as necessary.

Type

Mark topic as internal

abstract property pattern

or instead of topics, a regular expression used to match topics we want to subscribe to. :rtype: Optional[Pattern[AnyStr]]

abstract property partitions
Return type

Optional[int]

abstract derive(**kwargs) → faust.types.channels.ChannelT[source]
Return type

ChannelT[]

abstract derive_topic(*, topics: Sequence[str] = None, key_type: faust.types.topics._ModelArg = None, value_type: faust.types.topics._ModelArg = None, partitions: int = None, retention: Union[datetime.timedelta, float, str] = None, compacting: bool = None, deleting: bool = None, internal: bool = False, config: Mapping[str, Any] = None, prefix: str = '', suffix: str = '', **kwargs) → faust.types.topics.TopicT[source]
Return type

TopicT[]

class faust.GSSAPICredentials(*, kerberos_service_name: str = 'kafka', kerberos_domain_name: str = None, ssl_context: ssl.SSLContext = None, mechanism: Union[str, faust.types.auth.SASLMechanism] = None) → None[source]

Describe GSSAPI credentials over SASL.

protocol = 'SASL_PLAINTEXT'
mechanism = 'GSSAPI'
class faust.SASLCredentials(*, username: str = None, password: str = None, ssl_context: ssl.SSLContext = None, mechanism: Union[str, faust.types.auth.SASLMechanism] = None) → None[source]

Describe SASL credentials.

protocol = 'SASL_PLAINTEXT'
mechanism = 'PLAIN'
class faust.SSLCredentials(context: ssl.SSLContext = None, *, purpose: Any = None, cafile: Optional[str] = None, capath: Optional[str] = None, cadata: Optional[str] = None) → None[source]

Describe SSL credentials/settings.

protocol = 'SSL'
class faust.Settings(id: str, *, debug: bool = None, version: int = None, broker: Union[str, yarl.URL, List[yarl.URL]] = None, broker_client_id: str = None, broker_request_timeout: Union[datetime.timedelta, float, str] = None, broker_credentials: Union[faust.types.auth.CredentialsT, ssl.SSLContext] = None, broker_commit_every: int = None, broker_commit_interval: Union[datetime.timedelta, float, str] = None, broker_commit_livelock_soft_timeout: Union[datetime.timedelta, float, str] = None, broker_session_timeout: Union[datetime.timedelta, float, str] = None, broker_heartbeat_interval: Union[datetime.timedelta, float, str] = None, broker_check_crcs: bool = None, broker_max_poll_records: int = None, broker_max_poll_interval: int = None, broker_consumer: Union[str, yarl.URL, List[yarl.URL]] = None, broker_producer: Union[str, yarl.URL, List[yarl.URL]] = None, agent_supervisor: Union[_T, str] = None, store: Union[str, yarl.URL] = None, cache: Union[str, yarl.URL] = None, web: Union[str, yarl.URL] = None, web_enabled: bool = True, processing_guarantee: Union[str, faust.types.enums.ProcessingGuarantee] = None, timezone: datetime.tzinfo = None, autodiscover: Union[bool, Iterable[str], Callable[Iterable[str]]] = None, origin: str = None, canonical_url: Union[str, yarl.URL] = None, datadir: Union[pathlib.Path, str] = None, tabledir: Union[pathlib.Path, str] = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, logging_config: Dict = None, loghandlers: List[logging.Handler] = None, table_cleanup_interval: Union[datetime.timedelta, float, str] = None, table_standby_replicas: int = None, table_key_index_size: int = None, topic_replication_factor: int = None, topic_partitions: int = None, topic_allow_declare: bool = None, topic_disable_leader: bool = None, id_format: str = None, reply_to: str = None, reply_to_prefix: str = None, reply_create_topic: bool = None, reply_expires: Union[datetime.timedelta, float, str] = None, ssl_context: ssl.SSLContext = None, stream_buffer_maxsize: int = None, stream_wait_empty: bool = None, stream_ack_cancelled_tasks: bool = None, stream_ack_exceptions: bool = None, stream_publish_on_commit: bool = None, stream_recovery_delay: Union[datetime.timedelta, float, str] = None, producer_linger_ms: int = None, producer_max_batch_size: int = None, producer_acks: int = None, producer_max_request_size: int = None, producer_compression_type: str = None, producer_partitioner: Union[_T, str] = None, producer_request_timeout: Union[datetime.timedelta, float, str] = None, producer_api_version: str = None, consumer_max_fetch_size: int = None, consumer_auto_offset_reset: str = None, web_bind: str = None, web_port: int = None, web_host: str = None, web_transport: Union[str, yarl.URL] = None, web_in_thread: bool = None, web_cors_options: Mapping[str, faust.types.web.ResourceOptions] = None, worker_redirect_stdouts: bool = None, worker_redirect_stdouts_level: Union[int, str] = None, Agent: Union[_T, str] = None, ConsumerScheduler: Union[_T, str] = None, Stream: Union[_T, str] = None, Table: Union[_T, str] = None, SetTable: Union[_T, str] = None, TableManager: Union[_T, str] = None, Serializers: Union[_T, str] = None, Worker: Union[_T, str] = None, PartitionAssignor: Union[_T, str] = None, LeaderAssignor: Union[_T, str] = None, Router: Union[_T, str] = None, Topic: Union[_T, str] = None, HttpClient: Union[_T, str] = None, Monitor: Union[_T, str] = None, url: Union[str, yarl.URL] = None, **kwargs) → None[source]
classmethod setting_names() → Set[str][source]
Return type

Set[str]

id_format = '{id}-v{self.version}'
debug = False
ssl_context = None
autodiscover = False
broker_client_id = 'faust-1.7.4'
timezone = datetime.timezone.utc
broker_commit_every = 10000
broker_check_crcs = True
broker_max_poll_interval = 1000.0
key_serializer = 'raw'
value_serializer = 'json'
table_standby_replicas = 1
table_key_index_size = 1000
topic_replication_factor = 1
topic_partitions = 8
topic_allow_declare = True
topic_disable_leader = False
reply_create_topic = False
logging_config = None
stream_buffer_maxsize = 4096
stream_wait_empty = True
stream_ack_cancelled_tasks = True
stream_ack_exceptions = True
stream_publish_on_commit = False
producer_linger_ms = 0
producer_max_batch_size = 16384
producer_acks = -1
producer_max_request_size = 1000000
producer_compression_type = None
producer_api_version = 'auto'
consumer_max_fetch_size = 4194304
consumer_auto_offset_reset = 'earliest'
web_bind = '0.0.0.0'
web_port = 6066
web_host = 'build-9414419-project-230058-faust'
web_in_thread = False
web_cors_options = None
worker_redirect_stdouts = True
worker_redirect_stdouts_level = 'WARN'
reply_to_prefix = 'f-reply-'
property name
Return type

str

property id
Return type

str

property origin
Return type

Optional[str]

property version
Return type

int

property broker
Return type

List[URL]

property broker_consumer
Return type

List[URL]

property broker_producer
Return type

List[URL]

property store
Return type

URL

property web
Return type

URL

property cache
Return type

URL

property canonical_url
Return type

URL

property datadir
Return type

Path

property appdir
Return type

Path

find_old_versiondirs() → Iterable[pathlib.Path][source]
Return type

Iterable[Path]

property tabledir
Return type

Path

property processing_guarantee
Return type

ProcessingGuarantee

property broker_credentials
Return type

Optional[CredentialsT]

property broker_request_timeout
Return type

float

property broker_session_timeout
Return type

float

property broker_heartbeat_interval
Return type

float

property broker_commit_interval
Return type

float

property broker_commit_livelock_soft_timeout
Return type

float

property broker_max_poll_records
Return type

Optional[int]

property producer_partitioner
Return type

Optional[Callable[[Optional[bytes], Sequence[int], Sequence[int]], int]]

property producer_request_timeout
Return type

float

property table_cleanup_interval
Return type

float

property reply_expires
Return type

float

property stream_recovery_delay
Return type

float

property agent_supervisor
Return type

Type[SupervisorStrategyT]

property web_transport
Return type

URL

property Agent
Return type

Type[AgentT[]]

property ConsumerScheduler
Return type

Type[SchedulingStrategyT]

property Stream
Return type

Type[StreamT[+T_co]]

property Table
Return type

Type[TableT[~KT, ~VT]]

property SetTable
Return type

Type[TableT[~KT, ~VT]]

property TableManager
Return type

Type[TableManagerT[]]

property Serializers
Return type

Type[RegistryT]

property Worker
Return type

Type[_WorkerT]

property PartitionAssignor
Return type

Type[PartitionAssignorT]

property LeaderAssignor
Return type

Type[LeaderAssignorT[]]

property Router
Return type

Type[RouterT]

property Topic
Return type

Type[TopicT[]]

property HttpClient
Return type

Type[ClientSession]

property Monitor
Return type

Type[SensorT[]]

faust.HoppingWindow

alias of faust.windows._PyHoppingWindow

class faust.TumblingWindow(size: Union[datetime.timedelta, float, str], expires: Union[datetime.timedelta, float, str] = None) → None[source]

Tumbling window type.

Fixed-size, non-overlapping, gap-less windows.

faust.SlidingWindow

alias of faust.windows._PySlidingWindow

class faust.Window(*args, **kwargs)[source]

Base class for window types.

class faust.Worker(app: faust.types.app.AppT, *services, sensors: Iterable[faust.types.sensors.SensorT] = None, debug: bool = False, quiet: bool = False, loglevel: Union[str, int] = None, logfile: Union[str, IO] = None, stdout: IO = <_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>, stderr: IO = <_io.TextIOWrapper name='<stderr>' mode='w' encoding='UTF-8'>, blocking_timeout: float = 10.0, workdir: Union[pathlib.Path, str] = None, console_port: int = 50101, loop: asyncio.events.AbstractEventLoop = None, redirect_stdouts: bool = None, redirect_stdouts_level: int = None, logging_config: Dict = None, **kwargs) → None[source]

Worker.

Usage:

You can start a worker using:

  1. the faust worker program.

  2. instantiating Worker programmatically and calling execute_from_commandline():

    >>> worker = Worker(app)
    >>> worker.execute_from_commandline()
    
  3. or if you already have an event loop, calling await start, but in that case you are responsible for gracefully shutting down the event loop:

    async def start_worker(worker: Worker) -> None:
        await worker.start()
    
    def manage_loop():
        loop = asyncio.get_event_loop()
        worker = Worker(app, loop=loop)
        try:
            loop.run_until_complete(start_worker(worker)
        finally:
            worker.stop_and_shutdown_loop()
    
Parameters
  • app (AppT[]) – The Faust app to start.

  • *services – Services to start with worker. This includes application instances to start.

  • sensors (Iterable[SensorT]) – List of sensors to include.

  • debug (bool) – Enables debugging mode [disabled by default].

  • quiet (bool) – Do not output anything to console [disabled by default].

  • loglevel (Union[str, int]) – Level to use for logging, can be string (one of: CRIT|ERROR|WARN|INFO|DEBUG), or integer.

  • logfile (Union[str, IO]) – Name of file or a stream to log to.

  • stdout (IO) – Standard out stream.

  • stderr (IO) – Standard err stream.

  • blocking_timeout (float) – When debug is enabled this sets the timeout for detecting that the event loop is blocked.

  • workdir (Union[str, Path]) – Custom working directory for the process that the worker will change into when started. This working directory change is permanent for the process, or until something else changes the working directory again.

  • loop (asyncio.AbstractEventLoop) – Custom event loop object.

logger = <Logger faust.worker (WARNING)>
app = None

The Faust app started by this worker.

sensors = None

Additional sensors to add to the Faust app.

workdir = None

Current working directory. Note that if passed as an argument to Worker, the worker will change to this directory when started.

spinner = None

Class that displays a terminal progress spinner (see progress).

on_init_dependencies() → Iterable[mode.types.services.ServiceT][source]

Return service dependencies that must start with the worker.

Return type

Iterable[ServiceT[]]

change_workdir(path: pathlib.Path) → None[source]

Change the current working directory (CWD).

Return type

None

autodiscover() → None[source]

Autodiscover modules and files to find @agent decorators, etc.

Return type

None

on_worker_shutdown() → None[source]

Signal called before the worker is shutting down.

Return type

None

on_setup_root_logger(logger: logging.Logger, level: int) → None[source]

Signal called when the root logger is being configured.

Return type

None

faust.uuid() → str[source]

Generate random UUID string.

Shortcut to str(uuid4()).

Return type

str

class faust.Service(*, beacon: mode.utils.types.trees.NodeT = None, loop: asyncio.events.AbstractEventLoop = None) → None[source]

An asyncio service that can be started/stopped/restarted.

Keyword Arguments
abstract = False
class Diag(service: mode.types.services.ServiceT) → None

Service diagnostics.

This can be used to track what your service is doing. For example if your service is a Kafka consumer with a background thread that commits the offset every 30 seconds, you may want to see when this happens:

DIAG_COMMITTING = 'committing'

class Consumer(Service):

    @Service.task
    async def _background_commit(self) -> None:
        while not self.should_stop:
            await self.sleep(30.0)
            self.diag.set_flag(DIAG_COMITTING)
            try:
                await self._consumer.commit()
            finally:
                self.diag.unset_flag(DIAG_COMMITTING)

The above code is setting the flag manually, but you can also use a decorator to accomplish the same thing:

@Service.timer(30.0)
async def _background_commit(self) -> None:
    await self.commit()

@Service.transitions_with(DIAG_COMITTING)
async def commit(self) -> None:
    await self._consumer.commit()
set_flag(flag: str) → None
Return type

None

unset_flag(flag: str) → None
Return type

None

wait_for_shutdown = False

Set to True if .stop must wait for the shutdown flag to be set.

shutdown_timeout = 60.0

Time to wait for shutdown flag set before we give up.

restart_count = 0

Current number of times this service instance has been restarted.

mundane_level = 'info'

The log level for mundane info such as starting, stopping, etc. Set this to "debug" for less information.

classmethod from_awaitable(coro: Awaitable, *, name: str = None, **kwargs) → mode.types.services.ServiceT[source]
Return type

ServiceT[]

classmethod task(fun: Callable[Any, Awaitable[None]]) → mode.services.ServiceTask[source]

Decorate function to be used as background task.

Example

>>> class S(Service):
...
...     @Service.task
...     async def background_task(self):
...         while not self.should_stop:
...             await self.sleep(1.0)
...             print('Waking up')
Return type

ServiceTask

classmethod timer(interval: Union[datetime.timedelta, float, str]) → Callable[Callable[mode.types.services.ServiceT, Awaitable[None]], mode.services.ServiceTask][source]

Background timer executing every n seconds.

Example

>>> class S(Service):
...
...     @Service.timer(1.0)
...     async def background_timer(self):
...         print('Waking up')
Return type

Callable[[Callable[[ServiceT[]], Awaitable[None]]], ServiceTask]

classmethod transitions_to(flag: str) → Callable[source]

Decorate function to set and reset diagnostic flag.

Return type

Callable

add_dependency(service: mode.types.services.ServiceT) → mode.types.services.ServiceT[source]

Add dependency to other service.

The service will be started/stopped with this service.

Return type

ServiceT[]

add_context(context: ContextManager) → Any[source]
Return type

Any

add_future(coro: Awaitable) → _asyncio.Future[source]

Add relationship to asyncio.Future.

The future will be joined when this service is stopped.

Return type

Future

on_init() → None[source]
Return type

None

on_init_dependencies() → Iterable[mode.types.services.ServiceT][source]

Return list of service dependencies for this service.

Return type

Iterable[ServiceT[]]

service_reset() → None[source]
Return type

None

set_shutdown() → None[source]

Set the shutdown signal.

Notes

If wait_for_shutdown is set, stopping the service will wait for this flag to be set.

Return type

None

itertimer(interval: Union[datetime.timedelta, float, str], *, max_drift_correction: float = 0.1, loop: asyncio.events.AbstractEventLoop = None, sleep: Callable[..., Awaitable] = None, clock: Callable[float] = <built-in function perf_counter>, name: str = '') → AsyncIterator[float][source]

Sleep interval seconds for every iteration.

This is an async iterator that takes advantage of timer_intervals() to act as a timer that stop drift from occurring, and adds a tiny amount of drift to timers so that they don’t start at the same time.

Uses Service.sleep which will bail-out-quick if the service is stopped.

Note

Will sleep the full interval seconds before returning from first iteration.

Examples

>>> async for sleep_time in self.itertimer(1.0):
...   print('another second passed, just woke up...')
...   await perform_some_http_request()
Return type

AsyncIterator[float]

property started

Return True if the service was started. :rtype: bool

property crashed
Return type

bool

property should_stop

Return True if the service must stop. :rtype: bool

property state

Service state - as a human readable string. :rtype: str

property label

Label used for graphs. :rtype: str

property shortlabel

Label used for logging. :rtype: str

property beacon

Beacon used to track services in a dependency graph. :rtype: NodeT[~_T]

logger = <Logger mode.services (WARNING)>
class faust.ServiceT(*, beacon: mode.utils.types.trees.NodeT = None, loop: asyncio.events.AbstractEventLoop = None) → None[source]

Abstract type for an asynchronous service that can be started/stopped.

See also

mode.Service.

wait_for_shutdown = False
restart_count = 0
supervisor = None
abstract add_dependency(service: mode.types.services.ServiceT) → mode.types.services.ServiceT[source]
Return type

ServiceT[]

abstract add_context(context: ContextManager) → Any[source]
Return type

Any

abstract service_reset() → None[source]
Return type

None

abstract set_shutdown() → None[source]
Return type

None

abstract property started
Return type

bool

abstract property crashed
Return type

bool

abstract property should_stop
Return type

bool

abstract property state
Return type

str

abstract property label
Return type

str

abstract property shortlabel
Return type

str

property beacon
Return type

NodeT[~_T]

abstract property loop
Return type

AbstractEventLoop

faust.auth

Authentication Credentials.

class faust.auth.Credentials(*args, **kwargs)[source]

Base class for authentication credentials.

class faust.auth.SASLCredentials(*, username: str = None, password: str = None, ssl_context: ssl.SSLContext = None, mechanism: Union[str, faust.types.auth.SASLMechanism] = None) → None[source]

Describe SASL credentials.

protocol = 'SASL_PLAINTEXT'
mechanism = 'PLAIN'
class faust.auth.GSSAPICredentials(*, kerberos_service_name: str = 'kafka', kerberos_domain_name: str = None, ssl_context: ssl.SSLContext = None, mechanism: Union[str, faust.types.auth.SASLMechanism] = None) → None[source]

Describe GSSAPI credentials over SASL.

protocol = 'SASL_PLAINTEXT'
mechanism = 'GSSAPI'
class faust.auth.SSLCredentials(context: ssl.SSLContext = None, *, purpose: Any = None, cafile: Optional[str] = None, capath: Optional[str] = None, cadata: Optional[str] = None) → None[source]

Describe SSL credentials/settings.

protocol = 'SSL'
faust.exceptions

Faust exceptions.

exception faust.exceptions.FaustError[source]

Base-class for all Faust exceptions.

exception faust.exceptions.FaustWarning[source]

Base-class for all Faust warnings.

exception faust.exceptions.NotReady[source]

Service not started.

exception faust.exceptions.AlreadyConfiguredWarning[source]

Trying to configure app after configuration accessed.

exception faust.exceptions.ImproperlyConfigured[source]

The library is not configured/installed correctly.

exception faust.exceptions.DecodeError[source]

Error while decoding/deserializing message key/value.

exception faust.exceptions.KeyDecodeError[source]

Error while decoding/deserializing message key.

exception faust.exceptions.ValueDecodeError[source]

Error while decoding/deserializing message value.

exception faust.exceptions.SameNode[source]

Exception raised by router when data is located on same node.

exception faust.exceptions.ProducerSendError[source]

Error while sending attached messages prior to commit.

exception faust.exceptions.ConsumerNotStarted[source]

Error trying to perform operation on consumer not started.

exception faust.exceptions.PartitionsMismatch[source]

Number of partitions between related topics differ.

faust.channels

Channel.

A channel is used to send values to streams.

The stream will iterate over incoming events in the channel.

class faust.channels.Channel(app: faust.types.app.AppT, *, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, is_iterator: bool = False, queue: mode.utils.queues.ThrowableQueue = None, maxsize: int = None, root: faust.types.channels.ChannelT = None, active_partitions: Set[faust.types.tuples.TP] = None, loop: asyncio.events.AbstractEventLoop = None) → None[source]

Create new channel.

Parameters
  • app (AppT[]) – The app that created this channel (app.channel())

  • key_type (Union[Type[ModelT], Type[bytes], Type[str], None]) – The Model used for keys in this channel.

  • value_type (Union[Type[ModelT], Type[bytes], Type[str], None]) – The Model used for values in this channel.

  • maxsize (Optional[int]) – The maximum number of messages this channel can hold. If exceeded any new put call will block until a message is removed from the channel.

  • is_iterator (bool) – When streams iterate over a channel they will call stream.clone(is_iterator=True) so this attribute denotes that this channel instance is currently being iterated over.

  • active_partition – Set of active topic partitions this channel instance is assigned to.

  • loop (Optional[AbstractEventLoop]) – The asyncio event loop to use.

property queue

Return the underlying queue/buffer backing this channel. :rtype: ThrowableQueue

clone(*, is_iterator: bool = None, **kwargs) → faust.types.channels.ChannelT[source]

Create clone of this channel.

Parameters

is_iterator (Optional[bool]) – Set to True if this is now a channel that is being iterated over.

Keyword Arguments

**kwargs – Any keyword arguments passed will override any of the arguments supported by Channel.__init__.

Return type

ChannelT[]

clone_using_queue(queue: asyncio.queues.Queue) → faust.types.channels.ChannelT[source]

Create clone of this channel using specific queue instance.

Return type

ChannelT[]

stream(**kwargs) → faust.types.streams.StreamT[source]

Create stream reading from this channel.

Return type

StreamT[+T_co]

get_topic_name() → str[source]

Get the topic name, or raise if this is not a named channel.

Return type

str

send_soon(*, key: Union[bytes, faust.types.core._ModelT, Any, None] = None, value: Union[bytes, faust.types.core._ModelT, Any] = None, partition: int = None, timestamp: float = None, headers: Union[List[Tuple[str, bytes]], Mapping[str, bytes]] = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, callback: Callable[faust.types.tuples.FutureMessage, Union[None, Awaitable[None]]] = None, force: bool = False) → faust.types.tuples.FutureMessage[source]

Produce message by adding to buffer.

This method is only supported by Topic.

Raises

NotImplementedError – always for in-memory channel.

Return type

FutureMessage[]

as_future_message(key: Union[bytes, faust.types.core._ModelT, Any, None] = None, value: Union[bytes, faust.types.core._ModelT, Any] = None, partition: int = None, timestamp: float = None, headers: Union[List[Tuple[str, bytes]], Mapping[str, bytes]] = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, callback: Callable[faust.types.tuples.FutureMessage, Union[None, Awaitable[None]]] = None) → faust.types.tuples.FutureMessage[source]

Create promise that message will be transmitted.

Return type

FutureMessage[]

prepare_headers(headers: Union[List[Tuple[str, bytes]], Mapping[str, bytes], None]) → Union[List[Tuple[str, bytes]], MutableMapping[str, bytes]][source]

Prepare headers passed before publishing.

Return type

Union[List[Tuple[str, bytes]], MutableMapping[str, bytes]]

maybe_declare[source]

Declare/create this channel, but only if it doesn’t exist. :rtype: None

prepare_key(key: Union[bytes, faust.types.core._ModelT, Any, None], key_serializer: Union[faust.types.codecs.CodecT, str, None]) → Any[source]

Prepare key before it is sent to this channel.

Topic uses this to implement serialization of keys sent to the channel.

Return type

Any

prepare_value(value: Union[bytes, faust.types.core._ModelT, Any], value_serializer: Union[faust.types.codecs.CodecT, str, None]) → Any[source]

Prepare value before it is sent to this channel.

Topic uses this to implement serialization of values sent to the channel.

Return type

Any

empty() → bool[source]

Return True if the queue is empty.

Return type

bool

on_stop_iteration() → None[source]

Signal that iteration over this channel was stopped.

Tip

Remember to call super when overriding this method.

Return type

None

derive(**kwargs) → faust.types.channels.ChannelT[source]

Derive new channel from this channel, using new configuration.

See faust.Topic.derive.

For local channels this will simply return the same channel.

Return type

ChannelT[]

property subscriber_count

Return number of active subscribers to local channel. :rtype: int

property label

Short textual description of channel. :rtype: str

faust.events

Events received in streams.

class faust.events.Event(app: faust.types.app.AppT, key: Union[bytes, faust.types.core._ModelT, Any, None], value: Union[bytes, faust.types.core._ModelT, Any], headers: Union[List[Tuple[str, bytes]], Mapping[str, bytes], None], message: faust.types.tuples.Message) → None[source]

An event received on a channel.

Notes

  • Events have a key and a value:

    event.key, event.value
    
  • They also have a reference to the original message (if available), such as a Kafka record:

    event.message.offset

  • Iterating over channels/topics yields Event:

    async for event in channel:

  • Iterating over a stream (that in turn iterate over channel) yields Event.value:

    async for value in channel.stream()  # value is event.value
        ...
    
  • If you only have a Stream object, you can also access underlying events by using Stream.events.

    For example:

    async for event in channel.stream.events():
        ...
    

    Also commonly used for finding the “current event” related to a value in the stream:

    stream = channel.stream()
    async for event in stream.events():
        event = stream.current_event
        message = event.message
        topic = event.message.topic
    

    You can retrieve the current event in a stream to:

    • Get access to the serialized key+value.

    • Get access to message properties like, what topic+partition the value was received on, or its offset.

    If you want access to both key and value, you should use stream.items() instead.

    async for key, value in stream.items():
        ...
    

    stream.current_event can also be accessed but you must take extreme care you are using the correct stream object. Methods such as .group_by(key) and .through(topic) returns cloned stream objects, so in the example:

    The best way to access the current_event in an agent is to use the ContextVar:

    from faust import current_event
    
    @app.agent(topic)
    async def process(stream):
        async for value in stream:
            event = current_event()
    
app
key
value
message
headers
acked
ack() → bool[source]

Acknowledge event as being processed by stream.

When the last stream processor acks the message, the offset in the source topic will be marked as safe-to-commit, and the worker will commit and advance the committed offset.

Return type

bool

faust.joins

Join strategies.

class faust.joins.Join(*, stream: faust.types.streams.JoinableT, fields: Tuple[faust.types.models.FieldDescriptorT, ...]) → None[source]

Base class for join strategies.

class faust.joins.RightJoin(*, stream: faust.types.streams.JoinableT, fields: Tuple[faust.types.models.FieldDescriptorT, ...]) → None[source]

Right-join strategy.

class faust.joins.LeftJoin(*, stream: faust.types.streams.JoinableT, fields: Tuple[faust.types.models.FieldDescriptorT, ...]) → None[source]

Left-join strategy.

class faust.joins.InnerJoin(*, stream: faust.types.streams.JoinableT, fields: Tuple[faust.types.models.FieldDescriptorT, ...]) → None[source]

Inner-join strategy.

class faust.joins.OuterJoin(*, stream: faust.types.streams.JoinableT, fields: Tuple[faust.types.models.FieldDescriptorT, ...]) → None[source]

Outer-join strategy.

faust.streams

Streams.

faust.streams.current_event() → Optional[faust.types.events.EventT][source]

Return the event currently being processed, or None.

Return type

Optional[EventT[]]

class faust.streams.Stream(channel: AsyncIterator[T_co], *, app: faust.types.app.AppT, processors: Iterable[Callable[T]] = None, combined: List[faust.types.streams.JoinableT] = None, on_start: Callable = None, join_strategy: faust.types.joins.JoinT = None, beacon: mode.utils.types.trees.NodeT = None, concurrency_index: int = None, prev: faust.types.streams.StreamT = None, active_partitions: Set[faust.types.tuples.TP] = None, enable_acks: bool = True, prefix: str = '', loop: asyncio.events.AbstractEventLoop = None) → None[source]

A stream: async iterator processing events in channels/topics.

logger = <Logger faust.streams (WARNING)>
mundane_level = 'debug'
get_active_stream() → faust.types.streams.StreamT[source]

Return the currently active stream.

A stream can be derived using Stream.group_by etc, so if this stream was used to create another derived stream, this function will return the stream being actively consumed from. E.g. in the example:

>>> @app.agent()
... async def agent(a):
..      a = a
...     b = a.group_by(Withdrawal.account_id)
...     c = b.through('backup_topic')
...     async for value in c:
...         ...

The return value of a.get_active_stream() would be c.

Notes

The chain of streams that leads to the active stream is decided by the _next attribute. To get to the active stream we just traverse this linked-list:

>>> def get_active_stream(self):
...     node = self
...     while node._next:
...         node = node._next
Return type

StreamT[+T_co]

get_root_stream() → faust.types.streams.StreamT[source]

Get the root stream that this stream was derived from.

Return type

StreamT[+T_co]

add_processor(processor: Callable[T]) → None[source]

Add processor callback executed whenever a new event is received.

Processor functions can be async or non-async, must accept a single argument, and should return the value, mutated or not.

For example a processor handling a stream of numbers may modify the value:

def double(value: int) -> int:
    return value * 2

stream.add_processor(double)
Return type

None

info() → Mapping[str, Any][source]

Return stream settings as a dictionary.

Return type

Mapping[str, Any]

clone(**kwargs) → faust.types.streams.StreamT[source]

Create a clone of this stream.

Notes

If the cloned stream is supposed to supersede this stream, like in group_by/through/etc., you should use _chain() instead so stream._next = cloned_stream is set and get_active_stream() returns the cloned stream.

Return type

StreamT[+T_co]

noack() → faust.types.streams.StreamT[source]

Create new stream where acks are manual.

Return type

StreamT[+T_co]

items() → AsyncIterator[Tuple[Union[bytes, faust.types.core._ModelT, Any, None], T_co]][source]

Iterate over the stream as key, value pairs.

Examples

@app.agent(topic)
async def mytask(stream):
    async for key, value in stream.items():
        print(key, value)
Return type

AsyncIterator[Tuple[Union[bytes, _ModelT, Any, None], +T_co]]

events() → AsyncIterable[faust.types.events.EventT][source]

Iterate over the stream as events exclusively.

This means the stream must be iterating over a channel, or at least an iterable of event objects.

Return type

AsyncIterable[EventT[]]

take(max_: int, within: Union[datetime.timedelta, float, str]) → AsyncIterable[Sequence[T_co]][source]

Buffer n values at a time and yield a list of buffered values.

Parameters

within (Union[timedelta, float, str]) – Timeout for when we give up waiting for another value, and process the values we have. Warning: If there’s no timeout (i.e. timeout=None), the agent is likely to stall and block buffered events for an unreasonable length of time(!).

Return type

AsyncIterable[Sequence[+T_co]]

enumerate(start: int = 0) → AsyncIterable[Tuple[int, T_co]][source]

Enumerate values received on this stream.

Unlike Python’s built-in enumerate, this works with async generators.

Return type

AsyncIterable[Tuple[int, +T_co]]

through(channel: Union[str, faust.types.channels.ChannelT]) → faust.types.streams.StreamT[source]

Forward values to in this stream to channel.

Send messages received on this stream to another channel, and return a new stream that consumes from that channel.

Notes

The messages are forwarded after any processors have been applied.

Example

topic = app.topic('foo')

@app.agent(topic)
async def mytask(stream):
    async for value in stream.through(app.topic('bar')):
        # value was first received in topic 'foo',
        # then forwarded and consumed from topic 'bar'
        print(value)
Return type

StreamT[+T_co]

echo(*channels) → faust.types.streams.StreamT[source]

Forward values to one or more channels.

Unlike through(), we don’t consume from these channels.

Return type

StreamT[+T_co]

group_by(key: Union[faust.types.models.FieldDescriptorT, Callable[T, Union[bytes, faust.types.core._ModelT, Any, None]]], *, name: str = None, topic: faust.types.topics.TopicT = None, partitions: int = None) → faust.types.streams.StreamT[source]

Create new stream that repartitions the stream using a new key.

Parameters
  • key (Union[FieldDescriptorT[~T], Callable[[~T], Union[bytes, _ModelT, Any, None]]]) –

    The key argument decides how the new key is generated, it can be a field descriptor, a callable, or an async callable.

    Note: The name argument must be provided if the key

    argument is a callable.

  • name (Optional[str]) – Suffix to use for repartitioned topics. This argument is required if key is a callable.

Examples

Using a field descriptor to use a field in the event as the new key:

s = withdrawals_topic.stream()
# values in this stream are of type Withdrawal
async for event in s.group_by(Withdrawal.account_id):
    ...

Using an async callable to extract a new key:

s = withdrawals_topic.stream()

async def get_key(withdrawal):
    return await aiohttp.get(
        f'http://e.com/resolve_account/{withdrawal.account_id}')

async for event in s.group_by(get_key):
    ...

Using a regular callable to extract a new key:

s = withdrawals_topic.stream()

def get_key(withdrawal):
    return withdrawal.account_id.upper()

async for event in s.group_by(get_key):
    ...
Return type

StreamT[+T_co]

filter(fun: Callable[T]) → faust.types.streams.StreamT[source]

Filter values from stream using callback.

The callback may be a traditional function, lambda function, or an async def function.

This method is useful for filtering events before repartitioning a stream.

Examples

>>> async for v in stream.filter(lambda: v > 1000).group_by(...):
...     # do something
Return type

StreamT[+T_co]

derive_topic(name: str, *, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, prefix: str = '', suffix: str = '') → faust.types.topics.TopicT[source]

Create Topic description derived from the K/V type of this stream.

Parameters
  • name (str) – Topic name.

  • key_type (Union[Type[ModelT], Type[bytes], Type[str], None]) – Specific key type to use for this topic. If not set, the key type of this stream will be used.

  • value_type (Union[Type[ModelT], Type[bytes], Type[str], None]) – Specific value type to use for this topic. If not set, the value type of this stream will be used.

Raises

ValueError – if the stream channel is not a topic.

Return type

TopicT[]

combine(*nodes, **kwargs) → faust.types.streams.StreamT[source]

Combine streams and tables into joined stream.

Return type

StreamT[+T_co]

contribute_to_stream(active: faust.types.streams.StreamT) → None[source]

Add stream as node in joined stream.

Return type

None

join(*fields) → faust.types.streams.StreamT[source]

Create stream where events are joined.

Return type

StreamT[+T_co]

left_join(*fields) → faust.types.streams.StreamT[source]

Create stream where events are joined by LEFT JOIN.

Return type

StreamT[+T_co]

inner_join(*fields) → faust.types.streams.StreamT[source]

Create stream where events are joined by INNER JOIN.

Return type

StreamT[+T_co]

outer_join(*fields) → faust.types.streams.StreamT[source]

Create stream where events are joined by OUTER JOIN.

Return type

StreamT[+T_co]

property label

Return description of stream, used in graphs and logs. :rtype: str

shortlabel[source]

Return short description of stream.

faust.topics

Topic - Named channel using Kafka.

class faust.topics.Topic(app: faust.types.app.AppT, *, topics: Sequence[str] = None, pattern: Union[str, Pattern[~AnyStr]] = None, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, is_iterator: bool = False, partitions: int = None, retention: Union[datetime.timedelta, float, str] = None, compacting: bool = None, deleting: bool = None, replicas: int = None, acks: bool = True, internal: bool = False, config: Mapping[str, Any] = None, queue: mode.utils.queues.ThrowableQueue = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, maxsize: int = None, root: faust.types.channels.ChannelT = None, active_partitions: Set[faust.types.tuples.TP] = None, allow_empty: bool = False, loop: asyncio.events.AbstractEventLoop = None) → None[source]

Define new topic description.

Parameters
  • app (AppT[]) – App instance used to create this topic description.

  • topics (Optional[Sequence[str]]) – List of topic names.

  • partitions (Optional[int]) – Number of partitions for these topics. On declaration, topics are created using this. Note: If a message is produced before the topic is declared, and autoCreateTopics is enabled on the Kafka Server, the number of partitions used will be specified by the server configuration.

  • retention (Union[timedelta, float, str, None]) – Number of seconds (as float/timedelta) to keep messages in the topic before they can be expired by the server.

  • pattern (Union[str, Pattern[AnyStr], None]) – Regular expression evaluated to decide what topics to subscribe to. You cannot specify both topics and a pattern.

  • key_type (Union[Type[ModelT], Type[bytes], Type[str], None]) – How to deserialize keys for messages in this topic. Can be a faust.Model type, str, bytes, or None for “autodetect”

  • value_type (Union[Type[ModelT], Type[bytes], Type[str], None]) – How to deserialize values for messages in this topic. Can be a faust.Model type, str, bytes, or None for “autodetect”

  • active_partitions (Optional[Set[TP]]) – Set of faust.types.tuples.TP that this topic should be restricted to.

Raises

TypeError – if both topics and pattern is provided.

send_soon(*, key: Union[bytes, faust.types.core._ModelT, Any, None] = None, value: Union[bytes, faust.types.core._ModelT, Any] = None, partition: int = None, timestamp: float = None, headers: Union[List[Tuple[str, bytes]], Mapping[str, bytes]] = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, callback: Callable[faust.types.tuples.FutureMessage, Union[None, Awaitable[None]]] = None, force: bool = False) → faust.types.tuples.FutureMessage[source]

Produce message by adding to buffer.

Notes

This method can be used by non-async def functions to produce messages.

Return type

FutureMessage[]

property pattern

Regular expression used by this topic (if any). :rtype: Optional[Pattern[AnyStr]]

property partitions

Return the number of configured partitions for this topic.

Notes

This is only active for internal topics, fully owned and managed by Faust itself.

We never touch the configuration of a topic that exists in Kafka, and Kafka will sometimes automatically create topics when they don’t exist. In this case the number of partitions for the automatically created topic will depend on the Kafka server configuration (num.partitions).

Always make sure your topics have the correct number of partitions. :rtype: Optional[int]

derive(**kwargs) → faust.types.channels.ChannelT[source]

Create topic derived from the configuration of this topic.

Configuration will be copied from this topic, but any parameter overridden as a keyword argument.

See also

derive_topic(): for a list of supported keyword arguments.

Return type

ChannelT[]

derive_topic(*, topics: Sequence[str] = None, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, partitions: int = None, retention: Union[datetime.timedelta, float, str] = None, compacting: bool = None, deleting: bool = None, internal: bool = None, config: Mapping[str, Any] = None, prefix: str = '', suffix: str = '', **kwargs) → faust.types.topics.TopicT[source]

Create new topic with configuration derived from this topic.

Return type

TopicT[]

get_topic_name() → str[source]

Return the main topic name of this topic description.

As topic descriptions can have multiple topic names, this will only return when the topic has a singular topic name in the description.

Raises
  • TypeError – if configured with a regular expression pattern.

  • ValueError – if configured with multiple topic names.

  • TypeError – if not configured with any names or patterns.

Return type

str

prepare_key(key: Union[bytes, faust.types.core._ModelT, Any, None], key_serializer: Union[faust.types.codecs.CodecT, str, None]) → Any[source]

Serialize key to format suitable for transport.

Return type

Any

prepare_value(value: Union[bytes, faust.types.core._ModelT, Any], value_serializer: Union[faust.types.codecs.CodecT, str, None]) → Any[source]

Serialize value to format suitable for transport.

Return type

Any

maybe_declare[source]

Declare/create this topic, only if it does not exist. :rtype: None

faust.windows

Window Types.

class faust.windows.Window(*args, **kwargs)[source]

Base class for window types.

faust.windows.HoppingWindow

alias of faust.windows._PyHoppingWindow

class faust.windows.TumblingWindow(size: Union[datetime.timedelta, float, str], expires: Union[datetime.timedelta, float, str] = None) → None[source]

Tumbling window type.

Fixed-size, non-overlapping, gap-less windows.

faust.windows.SlidingWindow

alias of faust.windows._PySlidingWindow

faust.worker

Worker.

A “worker” starts a single instance of a Faust application.

See also

Starting the App: for more information.

class faust.worker.Worker(app: faust.types.app.AppT, *services, sensors: Iterable[faust.types.sensors.SensorT] = None, debug: bool = False, quiet: bool = False, loglevel: Union[str, int] = None, logfile: Union[str, IO] = None, stdout: IO = <_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>, stderr: IO = <_io.TextIOWrapper name='<stderr>' mode='w' encoding='UTF-8'>, blocking_timeout: float = 10.0, workdir: Union[pathlib.Path, str] = None, console_port: int = 50101, loop: asyncio.events.AbstractEventLoop = None, redirect_stdouts: bool = None, redirect_stdouts_level: int = None, logging_config: Dict = None, **kwargs) → None[source]

Worker.

Usage:

You can start a worker using:

  1. the faust worker program.

  2. instantiating Worker programmatically and calling execute_from_commandline():

    >>> worker = Worker(app)
    >>> worker.execute_from_commandline()
    
  3. or if you already have an event loop, calling await start, but in that case you are responsible for gracefully shutting down the event loop:

    async def start_worker(worker: Worker) -> None:
        await worker.start()
    
    def manage_loop():
        loop = asyncio.get_event_loop()
        worker = Worker(app, loop=loop)
        try:
            loop.run_until_complete(start_worker(worker)
        finally:
            worker.stop_and_shutdown_loop()
    
Parameters
  • app (AppT[]) – The Faust app to start.

  • *services – Services to start with worker. This includes application instances to start.

  • sensors (Iterable[SensorT]) – List of sensors to include.

  • debug (bool) – Enables debugging mode [disabled by default].

  • quiet (bool) – Do not output anything to console [disabled by default].

  • loglevel (Union[str, int]) – Level to use for logging, can be string (one of: CRIT|ERROR|WARN|INFO|DEBUG), or integer.

  • logfile (Union[str, IO]) – Name of file or a stream to log to.

  • stdout (IO) – Standard out stream.

  • stderr (IO) – Standard err stream.

  • blocking_timeout (float) – When debug is enabled this sets the timeout for detecting that the event loop is blocked.

  • workdir (Union[str, Path]) – Custom working directory for the process that the worker will change into when started. This working directory change is permanent for the process, or until something else changes the working directory again.

  • loop (asyncio.AbstractEventLoop) – Custom event loop object.

logger = <Logger faust.worker (WARNING)>
app = None

The Faust app started by this worker.

sensors = None

Additional sensors to add to the Faust app.

workdir = None

Current working directory. Note that if passed as an argument to Worker, the worker will change to this directory when started.

spinner = None

Class that displays a terminal progress spinner (see progress).

on_init_dependencies() → Iterable[mode.types.services.ServiceT][source]

Return service dependencies that must start with the worker.

Return type

Iterable[ServiceT[]]

change_workdir(path: pathlib.Path) → None[source]

Change the current working directory (CWD).

Return type

None

autodiscover() → None[source]

Autodiscover modules and files to find @agent decorators, etc.

Return type

None

on_worker_shutdown() → None[source]

Signal called before the worker is shutting down.

Return type

None

on_setup_root_logger(logger: logging.Logger, level: int) → None[source]

Signal called when the root logger is being configured.

Return type

None

App

faust.app

Application.

class faust.app.App(id: str, *, monitor: faust.sensors.monitor.Monitor = None, config_source: Any = None, loop: asyncio.events.AbstractEventLoop = None, beacon: mode.utils.types.trees.NodeT = None, **options) → None[source]

Faust Application.

Parameters

id (str) – Application ID.

Keyword Arguments

loop (asyncio.AbstractEventLoop) – optional event loop to use.

See also

Application Parameters – for supported keyword arguments.

SCAN_CATEGORIES = ['faust.agent', 'faust.command', 'faust.page', 'faust.service', 'faust.task']
class BootStrategy(app: faust.types.app.AppT, *, enable_web: bool = None, enable_kafka: bool = None, enable_kafka_producer: bool = None, enable_kafka_consumer: bool = None, enable_sensors: bool = None) → None

App startup strategy.

The startup strategy defines the graph of services to start when the Faust worker for an app starts.

agents() → Iterable[mode.types.services.ServiceT]

Return list of services required to start agents.

Return type

Iterable[ServiceT[]]

client_only() → Iterable[mode.types.services.ServiceT]

Return services to start when app is in client_only mode.

Return type

Iterable[ServiceT[]]

enable_kafka = True
enable_kafka_consumer = None
enable_kafka_producer = None
enable_sensors = True
enable_web = None
kafka_client_consumer() → Iterable[mode.types.services.ServiceT]

Return list of services required to start Kafka client consumer.

Return type

Iterable[ServiceT[]]

kafka_conductor() → Iterable[mode.types.services.ServiceT]

Return list of services required to start Kafka conductor.

Return type

Iterable[ServiceT[]]

kafka_consumer() → Iterable[mode.types.services.ServiceT]

Return list of services required to start Kafka consumer.

Return type

Iterable[ServiceT[]]

kafka_producer() → Iterable[mode.types.services.ServiceT]

Return list of services required to start Kafka producer.

Return type

Iterable[ServiceT[]]

producer_only() → Iterable[mode.types.services.ServiceT]

Return services to start when app is in producer_only mode.

Return type

Iterable[ServiceT[]]

sensors() → Iterable[mode.types.services.ServiceT]

Return list of services required to start sensors.

Return type

Iterable[ServiceT[]]

server() → Iterable[mode.types.services.ServiceT]

Return services to start when app is in default mode.

Return type

Iterable[ServiceT[]]

tables() → Iterable[mode.types.services.ServiceT]

Return list of table-related services.

Return type

Iterable[ServiceT[]]

web_components() → Iterable[mode.types.services.ServiceT]

Return list of web-related services (excluding web server).

Return type

Iterable[ServiceT[]]

web_server() → Iterable[mode.types.services.ServiceT]

Return list of web-server services.

Return type

Iterable[ServiceT[]]

class Settings(id: str, *, debug: bool = None, version: int = None, broker: Union[str, yarl.URL, List[yarl.URL]] = None, broker_client_id: str = None, broker_request_timeout: Union[datetime.timedelta, float, str] = None, broker_credentials: Union[faust.types.auth.CredentialsT, ssl.SSLContext] = None, broker_commit_every: int = None, broker_commit_interval: Union[datetime.timedelta, float, str] = None, broker_commit_livelock_soft_timeout: Union[datetime.timedelta, float, str] = None, broker_session_timeout: Union[datetime.timedelta, float, str] = None, broker_heartbeat_interval: Union[datetime.timedelta, float, str] = None, broker_check_crcs: bool = None, broker_max_poll_records: int = None, broker_max_poll_interval: int = None, broker_consumer: Union[str, yarl.URL, List[yarl.URL]] = None, broker_producer: Union[str, yarl.URL, List[yarl.URL]] = None, agent_supervisor: Union[_T, str] = None, store: Union[str, yarl.URL] = None, cache: Union[str, yarl.URL] = None, web: Union[str, yarl.URL] = None, web_enabled: bool = True, processing_guarantee: Union[str, faust.types.enums.ProcessingGuarantee] = None, timezone: datetime.tzinfo = None, autodiscover: Union[bool, Iterable[str], Callable[Iterable[str]]] = None, origin: str = None, canonical_url: Union[str, yarl.URL] = None, datadir: Union[pathlib.Path, str] = None, tabledir: Union[pathlib.Path, str] = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, logging_config: Dict = None, loghandlers: List[logging.Handler] = None, table_cleanup_interval: Union[datetime.timedelta, float, str] = None, table_standby_replicas: int = None, table_key_index_size: int = None, topic_replication_factor: int = None, topic_partitions: int = None, topic_allow_declare: bool = None, topic_disable_leader: bool = None, id_format: str = None, reply_to: str = None, reply_to_prefix: str = None, reply_create_topic: bool = None, reply_expires: Union[datetime.timedelta, float, str] = None, ssl_context: ssl.SSLContext = None, stream_buffer_maxsize: int = None, stream_wait_empty: bool = None, stream_ack_cancelled_tasks: bool = None, stream_ack_exceptions: bool = None, stream_publish_on_commit: bool = None, stream_recovery_delay: Union[datetime.timedelta, float, str] = None, producer_linger_ms: int = None, producer_max_batch_size: int = None, producer_acks: int = None, producer_max_request_size: int = None, producer_compression_type: str = None, producer_partitioner: Union[_T, str] = None, producer_request_timeout: Union[datetime.timedelta, float, str] = None, producer_api_version: str = None, consumer_max_fetch_size: int = None, consumer_auto_offset_reset: str = None, web_bind: str = None, web_port: int = None, web_host: str = None, web_transport: Union[str, yarl.URL] = None, web_in_thread: bool = None, web_cors_options: Mapping[str, faust.types.web.ResourceOptions] = None, worker_redirect_stdouts: bool = None, worker_redirect_stdouts_level: Union[int, str] = None, Agent: Union[_T, str] = None, ConsumerScheduler: Union[_T, str] = None, Stream: Union[_T, str] = None, Table: Union[_T, str] = None, SetTable: Union[_T, str] = None, TableManager: Union[_T, str] = None, Serializers: Union[_T, str] = None, Worker: Union[_T, str] = None, PartitionAssignor: Union[_T, str] = None, LeaderAssignor: Union[_T, str] = None, Router: Union[_T, str] = None, Topic: Union[_T, str] = None, HttpClient: Union[_T, str] = None, Monitor: Union[_T, str] = None, url: Union[str, yarl.URL] = None, **kwargs) → None
property Agent
Return type

Type[AgentT[]]

property ConsumerScheduler
Return type

Type[SchedulingStrategyT]

property HttpClient
Return type

Type[ClientSession]

property LeaderAssignor
Return type

Type[LeaderAssignorT[]]

property Monitor
Return type

Type[SensorT[]]

property PartitionAssignor
Return type

Type[PartitionAssignorT]

property Router
Return type

Type[RouterT]

property Serializers
Return type

Type[RegistryT]

property SetTable
Return type

Type[TableT[~KT, ~VT]]

property Stream
Return type

Type[StreamT[+T_co]]

property Table
Return type

Type[TableT[~KT, ~VT]]

property TableManager
Return type

Type[TableManagerT[]]

property Topic
Return type

Type[TopicT[]]

property Worker
Return type

Type[_WorkerT]

property agent_supervisor
Return type

Type[SupervisorStrategyT]

property appdir
Return type

Path

autodiscover = False
property broker
Return type

List[URL]

broker_check_crcs = True
broker_client_id = 'faust-1.7.4'
broker_commit_every = 10000
property broker_commit_interval
Return type

float

property broker_commit_livelock_soft_timeout
Return type

float

property broker_consumer
Return type

List[URL]

property broker_credentials
Return type

Optional[CredentialsT]

property broker_heartbeat_interval
Return type

float

broker_max_poll_interval = 1000.0
property broker_max_poll_records
Return type

Optional[int]

property broker_producer
Return type

List[URL]

property broker_request_timeout
Return type

float

property broker_session_timeout
Return type

float

property cache
Return type

URL

property canonical_url
Return type

URL

consumer_auto_offset_reset = 'earliest'
consumer_max_fetch_size = 4194304
property datadir
Return type

Path

debug = False
find_old_versiondirs() → Iterable[pathlib.Path]
Return type

Iterable[Path]

property id
Return type

str

id_format = '{id}-v{self.version}'
key_serializer = 'raw'
logging_config = None
property name
Return type

str

property origin
Return type

Optional[str]

property processing_guarantee
Return type

ProcessingGuarantee

producer_acks = -1
producer_api_version = 'auto'
producer_compression_type = None
producer_linger_ms = 0
producer_max_batch_size = 16384
producer_max_request_size = 1000000
property producer_partitioner
Return type

Optional[Callable[[Optional[bytes], Sequence[int], Sequence[int]], int]]

property producer_request_timeout
Return type

float

reply_create_topic = False
property reply_expires
Return type

float

reply_to_prefix = 'f-reply-'
classmethod setting_names() → Set[str]
Return type

Set[str]

ssl_context = None
property store
Return type

URL

stream_ack_cancelled_tasks = True
stream_ack_exceptions = True
stream_buffer_maxsize = 4096
stream_publish_on_commit = False
property stream_recovery_delay
Return type

float

stream_wait_empty = True
property table_cleanup_interval
Return type

float

table_key_index_size = 1000
table_standby_replicas = 1
property tabledir
Return type

Path

timezone = datetime.timezone.utc
topic_allow_declare = True
topic_disable_leader = False
topic_partitions = 8
topic_replication_factor = 1
value_serializer = 'json'
property version
Return type

int

property web
Return type

URL

web_bind = '0.0.0.0'
web_cors_options = None
web_host = 'build-9414419-project-230058-faust'
web_in_thread = False
web_port = 6066
property web_transport
Return type

URL

worker_redirect_stdouts = True
worker_redirect_stdouts_level = 'WARN'
client_only = False

Set this to True if app should only start the services required to operate as an RPC client (producer and simple reply consumer).

producer_only = False

Set this to True if app should run without consumer/tables.

tracer = None

Optional tracing support.

on_init_dependencies() → Iterable[mode.types.services.ServiceT][source]

Return list of additional service dependencies.

The services returned will be started with the app when the app starts.

Return type

Iterable[ServiceT[]]

config_from_object(obj: Any, *, silent: bool = False, force: bool = False) → None[source]

Read configuration from object.

Object is either an actual object or the name of a module to import.

Examples

>>> app.config_from_object('myproj.faustconfig')
>>> from myproj import faustconfig
>>> app.config_from_object(faustconfig)
Parameters
  • silent (bool) – If true then import errors will be ignored.

  • force (bool) – Force reading configuration immediately. By default the configuration will be read only when required.

Return type

None

finalize() → None[source]

Finalize app configuration.

Return type

None

worker_init() → None[source]

Init worker/CLI commands.

Return type

None

worker_init_post_autodiscover() → None[source]

Init worker after autodiscover.

Return type

None

discover(*extra_modules, categories: Iterable[str] = None, ignore: Iterable[Any] = [<built-in method search of _sre.SRE_Pattern object>, '.__main__']) → None[source]

Discover decorators in packages.

Return type

None

main() → NoReturn[source]

Execute the faust umbrella command using this app.

Return type

_NoReturn

topic(*topics, pattern: Union[str, Pattern[~AnyStr]] = None, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, partitions: int = None, retention: Union[datetime.timedelta, float, str] = None, compacting: bool = None, deleting: bool = None, replicas: int = None, acks: bool = True, internal: bool = False, config: Mapping[str, Any] = None, maxsize: int = None, allow_empty: bool = False, loop: asyncio.events.AbstractEventLoop = None) → faust.types.topics.TopicT[source]

Create topic description.

Topics are named channels (for example a Kafka topic), that exist on a server. To make an ephemeral local communication channel use: channel().

Return type

TopicT[]

channel(*, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, maxsize: int = None, loop: asyncio.events.AbstractEventLoop = None) → faust.types.channels.ChannelT[source]

Create new channel.

By default this will create an in-memory channel used for intra-process communication, but in practice channels can be backed by any transport (network or even means of inter-process communication).

Return type

ChannelT[]

agent(channel: Union[str, faust.types.channels.ChannelT] = None, *, name: str = None, concurrency: int = 1, supervisor_strategy: Type[mode.types.supervisors.SupervisorStrategyT] = None, sink: Iterable[Union[AgentT, faust.types.channels.ChannelT, Callable[Any, Optional[Awaitable]]]] = None, isolated_partitions: bool = False, use_reply_headers: bool = False, **kwargs) → Callable[Callable[faust.types.streams.StreamT, Union[Coroutine[[Any, Any], None], Awaitable[None], AsyncIterable]], faust.types.agents.AgentT][source]

Create Agent from async def function.

It can be a regular async function:

@app.agent()
async def my_agent(stream):
    async for number in stream:
        print(f'Received: {number!r}')

Or it can be an async iterator that yields values. These values can be used as the reply in an RPC-style call, or for sinks: callbacks that forward events to other agents/topics/statsd, and so on:

@app.agent(sink=[log_topic])
async def my_agent(requests):
    async for number in requests:
        yield number * 2
Return type

Callable[[Callable[[StreamT[+T_co]], Union[Coroutine[Any, Any, None], Awaitable[None], AsyncIterable[+T_co]]]], AgentT[]]

actor(channel: Union[str, faust.types.channels.ChannelT] = None, *, name: str = None, concurrency: int = 1, supervisor_strategy: Type[mode.types.supervisors.SupervisorStrategyT] = None, sink: Iterable[Union[AgentT, faust.types.channels.ChannelT, Callable[Any, Optional[Awaitable]]]] = None, isolated_partitions: bool = False, use_reply_headers: bool = False, **kwargs) → Callable[Callable[faust.types.streams.StreamT, Union[Coroutine[[Any, Any], None], Awaitable[None], AsyncIterable]], faust.types.agents.AgentT]

Create Agent from async def function.

It can be a regular async function:

@app.agent()
async def my_agent(stream):
    async for number in stream:
        print(f'Received: {number!r}')

Or it can be an async iterator that yields values. These values can be used as the reply in an RPC-style call, or for sinks: callbacks that forward events to other agents/topics/statsd, and so on:

@app.agent(sink=[log_topic])
async def my_agent(requests):
    async for number in requests:
        yield number * 2
Return type

Callable[[Callable[[StreamT[+T_co]], Union[Coroutine[Any, Any, None], Awaitable[None], AsyncIterable[+T_co]]]], AgentT[]]

task(fun: Union[Callable[AppT, Awaitable], Callable[Awaitable]] = None, *, on_leader: bool = False, traced: bool = True) → Union[Callable[Union[Callable[faust.types.app.AppT, Awaitable], Callable[Awaitable]], Union[Callable[faust.types.app.AppT, Awaitable], Callable[Awaitable]]], Callable[faust.types.app.AppT, Awaitable], Callable[Awaitable]][source]

Define an async def function to be started with the app.

This is like timer() but a one-shot task only executed at worker startup (after recovery and the worker is fully ready for operation).

The function may take zero, or one argument. If the target function takes an argument, the app argument is passed:

>>> @app.task
>>> async def on_startup(app):
...    print('STARTING UP: %r' % (app,))

Nullary functions are also supported:

>>> @app.task
>>> async def on_startup():
...     print('STARTING UP')
Return type

Union[Callable[[Union[Callable[[AppT[]], Awaitable[+T_co]], Callable[[], Awaitable[+T_co]]]], Union[Callable[[AppT[]], Awaitable[+T_co]], Callable[[], Awaitable[+T_co]]]], Callable[[AppT[]], Awaitable[+T_co]], Callable[[], Awaitable[+T_co]]]

timer(interval: Union[datetime.timedelta, float, str], on_leader: bool = False, traced: bool = True, name: str = None, max_drift_correction: float = 0.1) → Callable[source]

Define an async def function to be run at periodic intervals.

Like task(), but executes periodically until the worker is shut down.

This decorator takes an async function and adds it to a list of timers started with the app.

Parameters
  • interval (Seconds) – How often the timer executes in seconds.

  • on_leader (bool) – Should the timer only run on the leader?

Example

>>> @app.timer(interval=10.0)
>>> async def every_10_seconds():
...     print('TEN SECONDS JUST PASSED')
>>> app.timer(interval=5.0, on_leader=True)
>>> async def every_5_seconds():
...     print('FIVE SECONDS JUST PASSED. ALSO, I AM THE LEADER!')
Return type

Callable

crontab(cron_format: str, *, timezone: datetime.tzinfo = None, on_leader: bool = False, traced: bool = True) → Callable[source]

Define periodic task using Crontab description.

This is an async def function to be run at the fixed times, defined by the Cron format.

Like timer(), but executes at fixed times instead of executing at certain intervals.

This decorator takes an async function and adds it to a list of Cronjobs started with the app.

Parameters

cron_format (str) – The Cron spec defining fixed times to run the decorated function.

Keyword Arguments
  • timezone – The timezone to be taken into account for the Cron jobs. If not set value from timezone will be taken.

  • on_leader – Should the Cron job only run on the leader?

Example

>>> @app.crontab(cron_format='30 18 * * *',
                 timezone=pytz.timezone('US/Pacific'))
>>> async def every_6_30_pm_pacific():
...     print('IT IS 6:30pm')
>>> app.crontab(cron_format='30 18 * * *', on_leader=True)
>>> async def every_6_30_pm():
...     print('6:30pm UTC; ALSO, I AM THE LEADER!')
Return type

Callable

service(cls: Type[mode.types.services.ServiceT]) → Type[mode.types.services.ServiceT][source]

Decorate mode.Service to be started with the app.

Examples

from mode import Service

@app.service
class Foo(Service):
    ...
Return type

Type[ServiceT[]]

is_leader() → bool[source]

Return True if we are in leader worker process.

Return type

bool

stream(channel: Union[AsyncIterable, Iterable], beacon: mode.utils.types.trees.NodeT = None, **kwargs) → faust.types.streams.StreamT[source]

Create new stream from channel/topic/iterable/async iterable.

Parameters
Return type

StreamT[+T_co]

Returns

to iterate over events in the stream.

Return type

faust.Stream

Table(name: str, *, default: Callable[Any] = None, window: faust.types.windows.WindowT = None, partitions: int = None, help: str = None, **kwargs) → faust.types.tables.TableT[source]

Define new table.

Parameters
  • name (str) – Name used for table, note that two tables living in the same application cannot have the same name.

  • default (Optional[Callable[[], Any]]) – A callable, or type that will return a default value for keys missing in this table.

  • window (Optional[WindowT]) – A windowing strategy to wrap this window in.

Examples

>>> table = app.Table('user_to_amount', default=int)
>>> table['George']
0
>>> table['Elaine'] += 1
>>> table['Elaine'] += 1
>>> table['Elaine']
2
Return type

TableT[~KT, ~VT]

SetTable(name: str, *, window: faust.types.windows.WindowT = None, partitions: int = None, start_manager: bool = False, help: str = None, **kwargs) → faust.types.tables.TableT[source]

Table of sets.

Return type

TableT[~KT, ~VT]

page(path: str, *, base: Type[faust.web.views.View] = <class 'faust.web.views.View'>, cors_options: Mapping[str, faust.types.web.ResourceOptions] = None, name: str = None) → Callable[Union[Type[faust.types.web.View], Callable[[faust.types.web.View, faust.types.web.Request], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]], Callable[[faust.types.web.View, faust.types.web.Request, Any, Any], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]]], Type[faust.web.views.View]][source]

Decorate view to be included in the web server.

Return type

Callable[[Union[Type[View], Callable[[View, Request], Union[Coroutine[Any, Any, Response], Awaitable[Response]]], Callable[[View, Request, Any, Any], Union[Coroutine[Any, Any, Response], Awaitable[Response]]]]], Type[View]]

table_route(table: faust.types.tables.CollectionT, shard_param: str = None, *, query_param: str = None, match_info: str = None, exact_key: str = None) → Callable[Union[Callable[[faust.types.web.View, faust.types.web.Request], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]], Callable[[faust.types.web.View, faust.types.web.Request, Any, Any], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]]], Union[Callable[[faust.types.web.View, faust.types.web.Request], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]], Callable[[faust.types.web.View, faust.types.web.Request, Any, Any], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]]]][source]

Decorate view method to route request to table key destination.

Return type

Callable[[Union[Callable[[View, Request], Union[Coroutine[Any, Any, Response], Awaitable[Response]]], Callable[[View, Request, Any, Any], Union[Coroutine[Any, Any, Response], Awaitable[Response]]]]], Union[Callable[[View, Request], Union[Coroutine[Any, Any, Response], Awaitable[Response]]], Callable[[View, Request, Any, Any], Union[Coroutine[Any, Any, Response], Awaitable[Response]]]]]

command(*options, base: Optional[Type[faust.app.base._AppCommand]] = None, **kwargs) → Callable[Callable, Type[faust.app.base._AppCommand]][source]

Decorate async def function to be used as CLI command.

Return type

Callable[[Callable], Type[_AppCommand]]

trace(name: str, trace_enabled: bool = True, **extra_context) → ContextManager[source]

Return new trace context to trace operation using OpenTracing.

Return type

ContextManager[+T_co]

traced(fun: Callable, name: str = None, sample_rate: float = 1.0, **context) → Callable[source]

Decorate function to be traced using the OpenTracing API.

Return type

Callable

in_transaction[source]

Return True if stream is using transactions.

LiveCheck(**kwargs) → faust.app.base._LiveCheck[source]

Return new LiveCheck instance testing features for this app.

Return type

_LiveCheck

maybe_start_producer[source]

Ensure producer is started. :rtype: ProducerT[]

on_rebalance_start() → None[source]

Call when rebalancing starts.

Return type

None

on_rebalance_return() → None[source]
Return type

None

on_rebalance_end() → None[source]

Call when rebalancing is done.

Return type

None

FlowControlQueue(maxsize: int = None, *, clear_on_resume: bool = False, loop: asyncio.events.AbstractEventLoop = None) → mode.utils.queues.ThrowableQueue[source]

Like asyncio.Queue, but can be suspended/resumed.

Return type

ThrowableQueue

Worker(**kwargs) → faust.app.base._Worker[source]

Return application worker instance.

Return type

_Worker

on_webserver_init(web: faust.types.web.Web) → None[source]

Call when the Web server is initializing.

Return type

None

property conf

Application configuration. :rtype: Settings

property producer

Message producer. :rtype: ProducerT[]

property consumer

Message consumer. :rtype: ConsumerT[]

property transport

Consumer message transport. :rtype: TransportT

property producer_transport

Producer message transport. :rtype: TransportT

property cache

Cache backend. :rtype: CacheBackendT[]

logger = <Logger faust.app.base (WARNING)>
tables[source]

Map of available tables, and the table manager service.

topics[source]

Topic Conductor.

This is the mediator that moves messages fetched by the Consumer into the streams.

It’s also a set of registered topics by string topic name, so you can check if a topic is being consumed from by doing topic in app.topics.

property monitor

Monitor keeps stats about what’s going on inside the worker. :rtype: Monitor[]

flow_control[source]

Flow control of streams.

This object controls flow into stream queues, and can also clear all buffers.

property http_client

HTTP client Session. :rtype: ClientSession

assignor[source]

Partition Assignor.

Responsible for partition assignment.

router[source]

Find the node partitioned data belongs to.

The router helps us route web requests to the wanted Faust node. If a topic is sharded by account_id, the router can send us to the Faust worker responsible for any account. Used by the @app.table_route decorator.

web[source]

Web driver.

serializers[source]

Return serializer registry.

property label

Return human readable description of application. :rtype: str

property shortlabel

Return short description of application. :rtype: str

class faust.app.BootStrategy(app: faust.types.app.AppT, *, enable_web: bool = None, enable_kafka: bool = None, enable_kafka_producer: bool = None, enable_kafka_consumer: bool = None, enable_sensors: bool = None) → None[source]

App startup strategy.

The startup strategy defines the graph of services to start when the Faust worker for an app starts.

enable_kafka = True
enable_kafka_producer = None
enable_kafka_consumer = None
enable_web = None
enable_sensors = True
server() → Iterable[mode.types.services.ServiceT][source]

Return services to start when app is in default mode.

Return type

Iterable[ServiceT[]]

client_only() → Iterable[mode.types.services.ServiceT][source]

Return services to start when app is in client_only mode.

Return type

Iterable[ServiceT[]]

producer_only() → Iterable[mode.types.services.ServiceT][source]

Return services to start when app is in producer_only mode.

Return type

Iterable[ServiceT[]]

sensors() → Iterable[mode.types.services.ServiceT][source]

Return list of services required to start sensors.

Return type

Iterable[ServiceT[]]

kafka_producer() → Iterable[mode.types.services.ServiceT][source]

Return list of services required to start Kafka producer.

Return type

Iterable[ServiceT[]]

kafka_consumer() → Iterable[mode.types.services.ServiceT][source]

Return list of services required to start Kafka consumer.

Return type

Iterable[ServiceT[]]

kafka_client_consumer() → Iterable[mode.types.services.ServiceT][source]

Return list of services required to start Kafka client consumer.

Return type

Iterable[ServiceT[]]

agents() → Iterable[mode.types.services.ServiceT][source]

Return list of services required to start agents.

Return type

Iterable[ServiceT[]]

kafka_conductor() → Iterable[mode.types.services.ServiceT][source]

Return list of services required to start Kafka conductor.

Return type

Iterable[ServiceT[]]

web_server() → Iterable[mode.types.services.ServiceT][source]

Return list of web-server services.

Return type

Iterable[ServiceT[]]

web_components() → Iterable[mode.types.services.ServiceT][source]

Return list of web-related services (excluding web server).

Return type

Iterable[ServiceT[]]

tables() → Iterable[mode.types.services.ServiceT][source]

Return list of table-related services.

Return type

Iterable[ServiceT[]]

faust.app.base

Faust Application.

An app is an instance of the Faust library. Everything starts here.

class faust.app.base.BootStrategy(app: faust.types.app.AppT, *, enable_web: bool = None, enable_kafka: bool = None, enable_kafka_producer: bool = None, enable_kafka_consumer: bool = None, enable_sensors: bool = None) → None[source]

App startup strategy.

The startup strategy defines the graph of services to start when the Faust worker for an app starts.

enable_kafka = True
enable_kafka_producer = None
enable_kafka_consumer = None
enable_web = None
enable_sensors = True
server() → Iterable[mode.types.services.ServiceT][source]

Return services to start when app is in default mode.

Return type

Iterable[ServiceT[]]

client_only() → Iterable[mode.types.services.ServiceT][source]

Return services to start when app is in client_only mode.

Return type

Iterable[ServiceT[]]

producer_only() → Iterable[mode.types.services.ServiceT][source]

Return services to start when app is in producer_only mode.

Return type

Iterable[ServiceT[]]

sensors() → Iterable[mode.types.services.ServiceT][source]

Return list of services required to start sensors.

Return type

Iterable[ServiceT[]]

kafka_producer() → Iterable[mode.types.services.ServiceT][source]

Return list of services required to start Kafka producer.

Return type

Iterable[ServiceT[]]

kafka_consumer() → Iterable[mode.types.services.ServiceT][source]

Return list of services required to start Kafka consumer.

Return type

Iterable[ServiceT[]]

kafka_client_consumer() → Iterable[mode.types.services.ServiceT][source]

Return list of services required to start Kafka client consumer.

Return type

Iterable[ServiceT[]]

agents() → Iterable[mode.types.services.ServiceT][source]

Return list of services required to start agents.

Return type

Iterable[ServiceT[]]

kafka_conductor() → Iterable[mode.types.services.ServiceT][source]

Return list of services required to start Kafka conductor.

Return type

Iterable[ServiceT[]]

web_server() → Iterable[mode.types.services.ServiceT][source]

Return list of web-server services.

Return type

Iterable[ServiceT[]]

web_components() → Iterable[mode.types.services.ServiceT][source]

Return list of web-related services (excluding web server).

Return type

Iterable[ServiceT[]]

tables() → Iterable[mode.types.services.ServiceT][source]

Return list of table-related services.

Return type

Iterable[ServiceT[]]

class faust.app.base.App(id: str, *, monitor: faust.sensors.monitor.Monitor = None, config_source: Any = None, loop: asyncio.events.AbstractEventLoop = None, beacon: mode.utils.types.trees.NodeT = None, **options) → None[source]

Faust Application.

Parameters

id (str) – Application ID.

Keyword Arguments

loop (asyncio.AbstractEventLoop) – optional event loop to use.

See also

Application Parameters – for supported keyword arguments.

SCAN_CATEGORIES = ['faust.agent', 'faust.command', 'faust.page', 'faust.service', 'faust.task']
class BootStrategy(app: faust.types.app.AppT, *, enable_web: bool = None, enable_kafka: bool = None, enable_kafka_producer: bool = None, enable_kafka_consumer: bool = None, enable_sensors: bool = None) → None

App startup strategy.

The startup strategy defines the graph of services to start when the Faust worker for an app starts.

agents() → Iterable[mode.types.services.ServiceT]

Return list of services required to start agents.

Return type

Iterable[ServiceT[]]

client_only() → Iterable[mode.types.services.ServiceT]

Return services to start when app is in client_only mode.

Return type

Iterable[ServiceT[]]

enable_kafka = True
enable_kafka_consumer = None
enable_kafka_producer = None
enable_sensors = True
enable_web = None
kafka_client_consumer() → Iterable[mode.types.services.ServiceT]

Return list of services required to start Kafka client consumer.

Return type

Iterable[ServiceT[]]

kafka_conductor() → Iterable[mode.types.services.ServiceT]

Return list of services required to start Kafka conductor.

Return type

Iterable[ServiceT[]]

kafka_consumer() → Iterable[mode.types.services.ServiceT]

Return list of services required to start Kafka consumer.

Return type

Iterable[ServiceT[]]

kafka_producer() → Iterable[mode.types.services.ServiceT]

Return list of services required to start Kafka producer.

Return type

Iterable[ServiceT[]]

producer_only() → Iterable[mode.types.services.ServiceT]

Return services to start when app is in producer_only mode.

Return type

Iterable[ServiceT[]]

sensors() → Iterable[mode.types.services.ServiceT]

Return list of services required to start sensors.

Return type

Iterable[ServiceT[]]

server() → Iterable[mode.types.services.ServiceT]

Return services to start when app is in default mode.

Return type

Iterable[ServiceT[]]

tables() → Iterable[mode.types.services.ServiceT]

Return list of table-related services.

Return type

Iterable[ServiceT[]]

web_components() → Iterable[mode.types.services.ServiceT]

Return list of web-related services (excluding web server).

Return type

Iterable[ServiceT[]]

web_server() → Iterable[mode.types.services.ServiceT]

Return list of web-server services.

Return type

Iterable[ServiceT[]]

class Settings(id: str, *, debug: bool = None, version: int = None, broker: Union[str, yarl.URL, List[yarl.URL]] = None, broker_client_id: str = None, broker_request_timeout: Union[datetime.timedelta, float, str] = None, broker_credentials: Union[faust.types.auth.CredentialsT, ssl.SSLContext] = None, broker_commit_every: int = None, broker_commit_interval: Union[datetime.timedelta, float, str] = None, broker_commit_livelock_soft_timeout: Union[datetime.timedelta, float, str] = None, broker_session_timeout: Union[datetime.timedelta, float, str] = None, broker_heartbeat_interval: Union[datetime.timedelta, float, str] = None, broker_check_crcs: bool = None, broker_max_poll_records: int = None, broker_max_poll_interval: int = None, broker_consumer: Union[str, yarl.URL, List[yarl.URL]] = None, broker_producer: Union[str, yarl.URL, List[yarl.URL]] = None, agent_supervisor: Union[_T, str] = None, store: Union[str, yarl.URL] = None, cache: Union[str, yarl.URL] = None, web: Union[str, yarl.URL] = None, web_enabled: bool = True, processing_guarantee: Union[str, faust.types.enums.ProcessingGuarantee] = None, timezone: datetime.tzinfo = None, autodiscover: Union[bool, Iterable[str], Callable[Iterable[str]]] = None, origin: str = None, canonical_url: Union[str, yarl.URL] = None, datadir: Union[pathlib.Path, str] = None, tabledir: Union[pathlib.Path, str] = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, logging_config: Dict = None, loghandlers: List[logging.Handler] = None, table_cleanup_interval: Union[datetime.timedelta, float, str] = None, table_standby_replicas: int = None, table_key_index_size: int = None, topic_replication_factor: int = None, topic_partitions: int = None, topic_allow_declare: bool = None, topic_disable_leader: bool = None, id_format: str = None, reply_to: str = None, reply_to_prefix: str = None, reply_create_topic: bool = None, reply_expires: Union[datetime.timedelta, float, str] = None, ssl_context: ssl.SSLContext = None, stream_buffer_maxsize: int = None, stream_wait_empty: bool = None, stream_ack_cancelled_tasks: bool = None, stream_ack_exceptions: bool = None, stream_publish_on_commit: bool = None, stream_recovery_delay: Union[datetime.timedelta, float, str] = None, producer_linger_ms: int = None, producer_max_batch_size: int = None, producer_acks: int = None, producer_max_request_size: int = None, producer_compression_type: str = None, producer_partitioner: Union[_T, str] = None, producer_request_timeout: Union[datetime.timedelta, float, str] = None, producer_api_version: str = None, consumer_max_fetch_size: int = None, consumer_auto_offset_reset: str = None, web_bind: str = None, web_port: int = None, web_host: str = None, web_transport: Union[str, yarl.URL] = None, web_in_thread: bool = None, web_cors_options: Mapping[str, faust.types.web.ResourceOptions] = None, worker_redirect_stdouts: bool = None, worker_redirect_stdouts_level: Union[int, str] = None, Agent: Union[_T, str] = None, ConsumerScheduler: Union[_T, str] = None, Stream: Union[_T, str] = None, Table: Union[_T, str] = None, SetTable: Union[_T, str] = None, TableManager: Union[_T, str] = None, Serializers: Union[_T, str] = None, Worker: Union[_T, str] = None, PartitionAssignor: Union[_T, str] = None, LeaderAssignor: Union[_T, str] = None, Router: Union[_T, str] = None, Topic: Union[_T, str] = None, HttpClient: Union[_T, str] = None, Monitor: Union[_T, str] = None, url: Union[str, yarl.URL] = None, **kwargs) → None
property Agent
Return type

Type[AgentT[]]

property ConsumerScheduler
Return type

Type[SchedulingStrategyT]

property HttpClient
Return type

Type[ClientSession]

property LeaderAssignor
Return type

Type[LeaderAssignorT[]]

property Monitor
Return type

Type[SensorT[]]

property PartitionAssignor
Return type

Type[PartitionAssignorT]

property Router
Return type

Type[RouterT]

property Serializers
Return type

Type[RegistryT]

property SetTable
Return type

Type[TableT[~KT, ~VT]]

property Stream
Return type

Type[StreamT[+T_co]]

property Table
Return type

Type[TableT[~KT, ~VT]]

property TableManager
Return type

Type[TableManagerT[]]

property Topic
Return type

Type[TopicT[]]

property Worker
Return type

Type[_WorkerT]

property agent_supervisor
Return type

Type[SupervisorStrategyT]

property appdir
Return type

Path

autodiscover = False
property broker
Return type

List[URL]

broker_check_crcs = True
broker_client_id = 'faust-1.7.4'
broker_commit_every = 10000
property broker_commit_interval
Return type

float

property broker_commit_livelock_soft_timeout
Return type

float

property broker_consumer
Return type

List[URL]

property broker_credentials
Return type

Optional[CredentialsT]

property broker_heartbeat_interval
Return type

float

broker_max_poll_interval = 1000.0
property broker_max_poll_records
Return type

Optional[int]

property broker_producer
Return type

List[URL]

property broker_request_timeout
Return type

float

property broker_session_timeout
Return type

float

property cache
Return type

URL

property canonical_url
Return type

URL

consumer_auto_offset_reset = 'earliest'
consumer_max_fetch_size = 4194304
property datadir
Return type

Path

debug = False
find_old_versiondirs() → Iterable[pathlib.Path]
Return type

Iterable[Path]

property id
Return type

str

id_format = '{id}-v{self.version}'
key_serializer = 'raw'
logging_config = None
property name
Return type

str

property origin
Return type

Optional[str]

property processing_guarantee
Return type

ProcessingGuarantee

producer_acks = -1
producer_api_version = 'auto'
producer_compression_type = None
producer_linger_ms = 0
producer_max_batch_size = 16384
producer_max_request_size = 1000000
property producer_partitioner
Return type

Optional[Callable[[Optional[bytes], Sequence[int], Sequence[int]], int]]

property producer_request_timeout
Return type

float

reply_create_topic = False
property reply_expires
Return type

float

reply_to_prefix = 'f-reply-'
classmethod setting_names() → Set[str]
Return type

Set[str]

ssl_context = None
property store
Return type

URL

stream_ack_cancelled_tasks = True
stream_ack_exceptions = True
stream_buffer_maxsize = 4096
stream_publish_on_commit = False
property stream_recovery_delay
Return type

float

stream_wait_empty = True
property table_cleanup_interval
Return type

float

table_key_index_size = 1000
table_standby_replicas = 1
property tabledir
Return type

Path

timezone = datetime.timezone.utc
topic_allow_declare = True
topic_disable_leader = False
topic_partitions = 8
topic_replication_factor = 1
value_serializer = 'json'
property version
Return type

int

property web
Return type

URL

web_bind = '0.0.0.0'
web_cors_options = None
web_host = 'build-9414419-project-230058-faust'
web_in_thread = False
web_port = 6066
property web_transport
Return type

URL

worker_redirect_stdouts = True
worker_redirect_stdouts_level = 'WARN'
client_only = False

Set this to True if app should only start the services required to operate as an RPC client (producer and simple reply consumer).

producer_only = False

Set this to True if app should run without consumer/tables.

tracer = None

Optional tracing support.

on_init_dependencies() → Iterable[mode.types.services.ServiceT][source]

Return list of additional service dependencies.

The services returned will be started with the app when the app starts.

Return type

Iterable[ServiceT[]]

config_from_object(obj: Any, *, silent: bool = False, force: bool = False) → None[source]

Read configuration from object.

Object is either an actual object or the name of a module to import.

Examples

>>> app.config_from_object('myproj.faustconfig')
>>> from myproj import faustconfig
>>> app.config_from_object(faustconfig)
Parameters
  • silent (bool) – If true then import errors will be ignored.

  • force (bool) – Force reading configuration immediately. By default the configuration will be read only when required.

Return type

None

finalize() → None[source]

Finalize app configuration.

Return type

None

worker_init() → None[source]

Init worker/CLI commands.

Return type

None

worker_init_post_autodiscover() → None[source]

Init worker after autodiscover.

Return type

None

discover(*extra_modules, categories: Iterable[str] = None, ignore: Iterable[Any] = [<built-in method search of _sre.SRE_Pattern object>, '.__main__']) → None[source]

Discover decorators in packages.

Return type

None

main() → NoReturn[source]

Execute the faust umbrella command using this app.

Return type

_NoReturn

topic(*topics, pattern: Union[str, Pattern[~AnyStr]] = None, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, partitions: int = None, retention: Union[datetime.timedelta, float, str] = None, compacting: bool = None, deleting: bool = None, replicas: int = None, acks: bool = True, internal: bool = False, config: Mapping[str, Any] = None, maxsize: int = None, allow_empty: bool = False, loop: asyncio.events.AbstractEventLoop = None) → faust.types.topics.TopicT[source]

Create topic description.

Topics are named channels (for example a Kafka topic), that exist on a server. To make an ephemeral local communication channel use: channel().

Return type

TopicT[]

channel(*, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, maxsize: int = None, loop: asyncio.events.AbstractEventLoop = None) → faust.types.channels.ChannelT[source]

Create new channel.

By default this will create an in-memory channel used for intra-process communication, but in practice channels can be backed by any transport (network or even means of inter-process communication).

Return type

ChannelT[]

agent(channel: Union[str, faust.types.channels.ChannelT] = None, *, name: str = None, concurrency: int = 1, supervisor_strategy: Type[mode.types.supervisors.SupervisorStrategyT] = None, sink: Iterable[Union[AgentT, faust.types.channels.ChannelT, Callable[Any, Optional[Awaitable]]]] = None, isolated_partitions: bool = False, use_reply_headers: bool = False, **kwargs) → Callable[Callable[faust.types.streams.StreamT, Union[Coroutine[[Any, Any], None], Awaitable[None], AsyncIterable]], faust.types.agents.AgentT][source]

Create Agent from async def function.

It can be a regular async function:

@app.agent()
async def my_agent(stream):
    async for number in stream:
        print(f'Received: {number!r}')

Or it can be an async iterator that yields values. These values can be used as the reply in an RPC-style call, or for sinks: callbacks that forward events to other agents/topics/statsd, and so on:

@app.agent(sink=[log_topic])
async def my_agent(requests):
    async for number in requests:
        yield number * 2
Return type

Callable[[Callable[[StreamT[+T_co]], Union[Coroutine[Any, Any, None], Awaitable[None], AsyncIterable[+T_co]]]], AgentT[]]

actor(channel: Union[str, faust.types.channels.ChannelT] = None, *, name: str = None, concurrency: int = 1, supervisor_strategy: Type[mode.types.supervisors.SupervisorStrategyT] = None, sink: Iterable[Union[AgentT, faust.types.channels.ChannelT, Callable[Any, Optional[Awaitable]]]] = None, isolated_partitions: bool = False, use_reply_headers: bool = False, **kwargs) → Callable[Callable[faust.types.streams.StreamT, Union[Coroutine[[Any, Any], None], Awaitable[None], AsyncIterable]], faust.types.agents.AgentT]

Create Agent from async def function.

It can be a regular async function:

@app.agent()
async def my_agent(stream):
    async for number in stream:
        print(f'Received: {number!r}')

Or it can be an async iterator that yields values. These values can be used as the reply in an RPC-style call, or for sinks: callbacks that forward events to other agents/topics/statsd, and so on:

@app.agent(sink=[log_topic])
async def my_agent(requests):
    async for number in requests:
        yield number * 2
Return type

Callable[[Callable[[StreamT[+T_co]], Union[Coroutine[Any, Any, None], Awaitable[None], AsyncIterable[+T_co]]]], AgentT[]]

task(fun: Union[Callable[AppT, Awaitable], Callable[Awaitable]] = None, *, on_leader: bool = False, traced: bool = True) → Union[Callable[Union[Callable[faust.types.app.AppT, Awaitable], Callable[Awaitable]], Union[Callable[faust.types.app.AppT, Awaitable], Callable[Awaitable]]], Callable[faust.types.app.AppT, Awaitable], Callable[Awaitable]][source]

Define an async def function to be started with the app.

This is like timer() but a one-shot task only executed at worker startup (after recovery and the worker is fully ready for operation).

The function may take zero, or one argument. If the target function takes an argument, the app argument is passed:

>>> @app.task
>>> async def on_startup(app):
...    print('STARTING UP: %r' % (app,))

Nullary functions are also supported:

>>> @app.task
>>> async def on_startup():
...     print('STARTING UP')
Return type

Union[Callable[[Union[Callable[[AppT[]], Awaitable[+T_co]], Callable[[], Awaitable[+T_co]]]], Union[Callable[[AppT[]], Awaitable[+T_co]], Callable[[], Awaitable[+T_co]]]], Callable[[AppT[]], Awaitable[+T_co]], Callable[[], Awaitable[+T_co]]]

timer(interval: Union[datetime.timedelta, float, str], on_leader: bool = False, traced: bool = True, name: str = None, max_drift_correction: float = 0.1) → Callable[source]

Define an async def function to be run at periodic intervals.

Like task(), but executes periodically until the worker is shut down.

This decorator takes an async function and adds it to a list of timers started with the app.

Parameters
  • interval (Seconds) – How often the timer executes in seconds.

  • on_leader (bool) – Should the timer only run on the leader?

Example

>>> @app.timer(interval=10.0)
>>> async def every_10_seconds():
...     print('TEN SECONDS JUST PASSED')
>>> app.timer(interval=5.0, on_leader=True)
>>> async def every_5_seconds():
...     print('FIVE SECONDS JUST PASSED. ALSO, I AM THE LEADER!')
Return type

Callable

crontab(cron_format: str, *, timezone: datetime.tzinfo = None, on_leader: bool = False, traced: bool = True) → Callable[source]

Define periodic task using Crontab description.

This is an async def function to be run at the fixed times, defined by the Cron format.

Like timer(), but executes at fixed times instead of executing at certain intervals.

This decorator takes an async function and adds it to a list of Cronjobs started with the app.

Parameters

cron_format (str) – The Cron spec defining fixed times to run the decorated function.

Keyword Arguments
  • timezone – The timezone to be taken into account for the Cron jobs. If not set value from timezone will be taken.

  • on_leader – Should the Cron job only run on the leader?

Example

>>> @app.crontab(cron_format='30 18 * * *',
                 timezone=pytz.timezone('US/Pacific'))
>>> async def every_6_30_pm_pacific():
...     print('IT IS 6:30pm')
>>> app.crontab(cron_format='30 18 * * *', on_leader=True)
>>> async def every_6_30_pm():
...     print('6:30pm UTC; ALSO, I AM THE LEADER!')
Return type

Callable

service(cls: Type[mode.types.services.ServiceT]) → Type[mode.types.services.ServiceT][source]

Decorate mode.Service to be started with the app.

Examples

from mode import Service

@app.service
class Foo(Service):
    ...
Return type

Type[ServiceT[]]

is_leader() → bool[source]

Return True if we are in leader worker process.

Return type

bool

stream(channel: Union[AsyncIterable, Iterable], beacon: mode.utils.types.trees.NodeT = None, **kwargs) → faust.types.streams.StreamT[source]

Create new stream from channel/topic/iterable/async iterable.

Parameters
Return type

StreamT[+T_co]

Returns

to iterate over events in the stream.

Return type

faust.Stream

Table(name: str, *, default: Callable[Any] = None, window: faust.types.windows.WindowT = None, partitions: int = None, help: str = None, **kwargs) → faust.types.tables.TableT[source]

Define new table.

Parameters
  • name (str) – Name used for table, note that two tables living in the same application cannot have the same name.

  • default (Optional[Callable[[], Any]]) – A callable, or type that will return a default value for keys missing in this table.

  • window (Optional[WindowT]) – A windowing strategy to wrap this window in.

Examples

>>> table = app.Table('user_to_amount', default=int)
>>> table['George']
0
>>> table['Elaine'] += 1
>>> table['Elaine'] += 1
>>> table['Elaine']
2
Return type

TableT[~KT, ~VT]

SetTable(name: str, *, window: faust.types.windows.WindowT = None, partitions: int = None, start_manager: bool = False, help: str = None, **kwargs) → faust.types.tables.TableT[source]

Table of sets.

Return type

TableT[~KT, ~VT]

page(path: str, *, base: Type[faust.web.views.View] = <class 'faust.web.views.View'>, cors_options: Mapping[str, faust.types.web.ResourceOptions] = None, name: str = None) → Callable[Union[Type[faust.types.web.View], Callable[[faust.types.web.View, faust.types.web.Request], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]], Callable[[faust.types.web.View, faust.types.web.Request, Any, Any], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]]], Type[faust.web.views.View]][source]

Decorate view to be included in the web server.

Return type

Callable[[Union[Type[View], Callable[[View, Request], Union[Coroutine[Any, Any, Response], Awaitable[Response]]], Callable[[View, Request, Any, Any], Union[Coroutine[Any, Any, Response], Awaitable[Response]]]]], Type[View]]

table_route(table: faust.types.tables.CollectionT, shard_param: str = None, *, query_param: str = None, match_info: str = None, exact_key: str = None) → Callable[Union[Callable[[faust.types.web.View, faust.types.web.Request], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]], Callable[[faust.types.web.View, faust.types.web.Request, Any, Any], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]]], Union[Callable[[faust.types.web.View, faust.types.web.Request], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]], Callable[[faust.types.web.View, faust.types.web.Request, Any, Any], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]]]][source]

Decorate view method to route request to table key destination.

Return type

Callable[[Union[Callable[[View, Request], Union[Coroutine[Any, Any, Response], Awaitable[Response]]], Callable[[View, Request, Any, Any], Union[Coroutine[Any, Any, Response], Awaitable[Response]]]]], Union[Callable[[View, Request], Union[Coroutine[Any, Any, Response], Awaitable[Response]]], Callable[[View, Request, Any, Any], Union[Coroutine[Any, Any, Response], Awaitable[Response]]]]]

command(*options, base: Optional[Type[faust.app.base._AppCommand]] = None, **kwargs) → Callable[Callable, Type[faust.app.base._AppCommand]][source]

Decorate async def function to be used as CLI command.

Return type

Callable[[Callable], Type[_AppCommand]]

trace(name: str, trace_enabled: bool = True, **extra_context) → ContextManager[source]

Return new trace context to trace operation using OpenTracing.

Return type

ContextManager[+T_co]

traced(fun: Callable, name: str = None, sample_rate: float = 1.0, **context) → Callable[source]

Decorate function to be traced using the OpenTracing API.

Return type

Callable

in_transaction[source]

Return True if stream is using transactions.

LiveCheck(**kwargs) → faust.app.base._LiveCheck[source]

Return new LiveCheck instance testing features for this app.

Return type

_LiveCheck

maybe_start_producer[source]

Ensure producer is started. :rtype: ProducerT[]

on_rebalance_start() → None[source]

Call when rebalancing starts.

Return type

None

on_rebalance_return() → None[source]
Return type

None

on_rebalance_end() → None[source]

Call when rebalancing is done.

Return type

None

FlowControlQueue(maxsize: int = None, *, clear_on_resume: bool = False, loop: asyncio.events.AbstractEventLoop = None) → mode.utils.queues.ThrowableQueue[source]

Like asyncio.Queue, but can be suspended/resumed.

Return type

ThrowableQueue

Worker(**kwargs) → faust.app.base._Worker[source]

Return application worker instance.

Return type

_Worker

on_webserver_init(web: faust.types.web.Web) → None[source]

Call when the Web server is initializing.

Return type

None

property conf

Application configuration. :rtype: Settings

property producer

Message producer. :rtype: ProducerT[]

property consumer

Message consumer. :rtype: ConsumerT[]

property transport

Consumer message transport. :rtype: TransportT

property producer_transport

Producer message transport. :rtype: TransportT

property cache

Cache backend. :rtype: CacheBackendT[]

logger = <Logger faust.app.base (WARNING)>
tables[source]

Map of available tables, and the table manager service.

topics[source]

Topic Conductor.

This is the mediator that moves messages fetched by the Consumer into the streams.

It’s also a set of registered topics by string topic name, so you can check if a topic is being consumed from by doing topic in app.topics.

property monitor

Monitor keeps stats about what’s going on inside the worker. :rtype: Monitor[]

flow_control[source]

Flow control of streams.

This object controls flow into stream queues, and can also clear all buffers.

property http_client

HTTP client Session. :rtype: ClientSession

assignor[source]

Partition Assignor.

Responsible for partition assignment.

router[source]

Find the node partitioned data belongs to.

The router helps us route web requests to the wanted Faust node. If a topic is sharded by account_id, the router can send us to the Faust worker responsible for any account. Used by the @app.table_route decorator.

web[source]

Web driver.

serializers[source]

Return serializer registry.

property label

Return human readable description of application. :rtype: str

property shortlabel

Return short description of application. :rtype: str

faust.app.router

Route messages to Faust nodes by partitioning.

class faust.app.router.Router(app: faust.types.app.AppT) → None[source]

Router for app.router.

key_store(table_name: str, key: Union[bytes, faust.types.core._ModelT, Any, None]) → yarl.URL[source]

Return the URL of web server that hosts key in table.

Return type

URL

table_metadata(table_name: str) → MutableMapping[str, MutableMapping[str, List[int]]][source]

Return metadata stored for table in the partition assignor.

Return type

MutableMapping[str, MutableMapping[str, List[int]]]

tables_metadata() → MutableMapping[str, MutableMapping[str, List[int]]][source]

Return metadata stored for all tables in the partition assignor.

Return type

MutableMapping[str, MutableMapping[str, List[int]]]

Agents

faust.agents

Agents.

class faust.agents.Agent(fun: Callable[faust.types.streams.StreamT, Union[Coroutine[[Any, Any], None], Awaitable[None], AsyncIterable]], *, app: faust.types.app.AppT, name: str = None, channel: Union[str, faust.types.channels.ChannelT] = None, concurrency: int = 1, sink: Iterable[Union[AgentT, faust.types.channels.ChannelT, Callable[Any, Optional[Awaitable]]]] = None, on_error: Callable[[AgentT, BaseException], Awaitable] = None, supervisor_strategy: Type[mode.types.supervisors.SupervisorStrategyT] = None, help: str = None, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, isolated_partitions: bool = False, use_reply_headers: bool = None, **kwargs) → None[source]

Agent.

This is the type of object returned by the @app.agent decorator.

supervisor = None
on_init_dependencies() → Iterable[mode.types.services.ServiceT][source]

Return list of services dependencies required to start agent.

Return type

Iterable[ServiceT[]]

cancel() → None[source]

Cancel agent and its actor instances running in this process.

Return type

None

info() → Mapping[source]

Return agent attributes as a dictionary.

Return type

Mapping[~KT, +VT_co]

clone(*, cls: Type[faust.types.agents.AgentT] = None, **kwargs) → faust.types.agents.AgentT[source]

Create clone of this agent object.

Keyword arguments can be passed to override any argument supported by Agent.__init__.

Return type

AgentT[]

test_context(channel: faust.types.channels.ChannelT = None, supervisor_strategy: mode.types.supervisors.SupervisorStrategyT = None, on_error: Callable[[AgentT, BaseException], Awaitable] = None, **kwargs) → faust.types.agents.AgentTestWrapperT[source]

Create new unit-testing wrapper for this agent.

Return type

AgentTestWrapperT[]

actor_from_stream(stream: Optional[faust.types.streams.StreamT], *, index: int = None, active_partitions: Set[faust.types.tuples.TP] = None, channel: faust.types.channels.ChannelT = None) → faust.types.agents.ActorT[Union[AsyncIterable, Awaitable]][source]

Create new actor from stream.

Return type

ActorT[]

add_sink(sink: Union[AgentT, faust.types.channels.ChannelT, Callable[Any, Optional[Awaitable]]]) → None[source]

Add new sink to further handle results from this agent.

Return type

None

stream(channel: faust.types.channels.ChannelT = None, active_partitions: Set[faust.types.tuples.TP] = None, **kwargs) → faust.types.streams.StreamT[source]

Create underlying stream used by this agent.

Return type

StreamT[+T_co]

map(values: Union[AsyncIterable, Iterable], key: Union[bytes, faust.types.core._ModelT, Any, None] = None, reply_to: Union[AgentT, faust.types.channels.ChannelT, str] = None) → AsyncIterator[source]

RPC map operation on a list of values.

A map operation iterates over results as they arrive. See join() and kvjoin() if you want them in order.

Return type

AsyncIterator[+T_co]

kvmap(items: Union[AsyncIterable[Tuple[Union[bytes, faust.types.core._ModelT, Any, None], Union[bytes, faust.types.core._ModelT, Any]]], Iterable[Tuple[Union[bytes, faust.types.core._ModelT, Any, None], Union[bytes, faust.types.core._ModelT, Any]]]], reply_to: Union[AgentT, faust.types.channels.ChannelT, str] = None) → AsyncIterator[str][source]

RPC map operation on a list of (key, value) pairs.

A map operation iterates over results as they arrive. See join() and kvjoin() if you want them in order.

Return type

AsyncIterator[str]

get_topic_names() → Iterable[str][source]

Return list of topic names this agent subscribes to.

Return type

Iterable[str]

property channel

Return channel used by agent. :rtype: ChannelT[]

property channel_iterator

Return channel agent iterates over. :rtype: AsyncIterator[+T_co]

property label

Return human-readable description of agent. :rtype: str

property shortlabel

Return short description of agent. :rtype: str

logger = <Logger faust.agents.agent (WARNING)>
faust.agents.AgentFun

alias of typing.Callable

class faust.agents.AgentT(fun: Callable[faust.types.streams.StreamT, Union[Coroutine[[Any, Any], None], Awaitable[None], AsyncIterable]], *, name: str = None, app: faust.types.agents._AppT = None, channel: Union[str, faust.types.channels.ChannelT] = None, concurrency: int = 1, sink: Iterable[Union[AgentT, faust.types.channels.ChannelT, Callable[Any, Optional[Awaitable]]]] = None, on_error: Callable[[AgentT, BaseException], Awaitable] = None, supervisor_strategy: Type[mode.types.supervisors.SupervisorStrategyT] = None, help: str = None, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, isolated_partitions: bool = False, **kwargs) → None[source]
abstract test_context(channel: faust.types.channels.ChannelT = None, supervisor_strategy: mode.types.supervisors.SupervisorStrategyT = None, **kwargs) → faust.types.agents.AgentTestWrapperT[source]
Return type

AgentTestWrapperT[]

abstract add_sink(sink: Union[AgentT, faust.types.channels.ChannelT, Callable[Any, Optional[Awaitable]]]) → None[source]
Return type

None

abstract stream(**kwargs) → faust.types.streams.StreamT[source]
Return type

StreamT[+T_co]

abstract info() → Mapping[source]
Return type

Mapping[~KT, +VT_co]

abstract clone(*, cls: Type[AgentT] = None, **kwargs) → faust.types.agents.AgentT[source]
Return type

AgentT[]

abstract get_topic_names() → Iterable[str][source]
Return type

Iterable[str]

abstract property channel
Return type

ChannelT[]

abstract property channel_iterator
Return type

AsyncIterator[+T_co]

class faust.agents.AgentManager(app: faust.types.app.AppT, **kwargs) → None[source]

Agent manager.

service_reset() → None[source]

Reset service state on restart.

Return type

None

cancel() → None[source]

Cancel all running agents.

Return type

None

update_topic_index() → None[source]

Update indices.

Return type

None

logger = <Logger faust.agents.manager (WARNING)>
class faust.agents.AgentManagerT(*, beacon: mode.utils.types.trees.NodeT = None, loop: asyncio.events.AbstractEventLoop = None) → None[source]
class faust.agents.ReplyConsumer(app: faust.types.app.AppT, **kwargs) → None[source]

Consumer responsible for redelegation of replies received.

logger = <Logger faust.agents.replies (WARNING)>
faust.agents.current_agent() → Optional[faust.types.agents.AgentT][source]
Return type

Optional[AgentT[]]

faust.agents.actor

Actor - Individual Agent instances.

class faust.agents.actor.Actor(agent: faust.types.agents.AgentT, stream: faust.types.streams.StreamT, it: _T, index: int = None, active_partitions: Set[faust.types.tuples.TP] = None, **kwargs) → None[source]

An actor is a specific agent instance.

mundane_level = 'debug'
cancel() → None[source]

Tell actor to stop reading from the stream.

Return type

None

property label

Return human readable description of actor. :rtype: str

logger = <Logger faust.agents.actor (WARNING)>
class faust.agents.actor.AsyncIterableActor(agent: faust.types.agents.AgentT, stream: faust.types.streams.StreamT, it: _T, index: int = None, active_partitions: Set[faust.types.tuples.TP] = None, **kwargs) → None[source]

Used for agent function that yields.

logger = <Logger faust.agents.actor (WARNING)>
class faust.agents.actor.AwaitableActor(agent: faust.types.agents.AgentT, stream: faust.types.streams.StreamT, it: _T, index: int = None, active_partitions: Set[faust.types.tuples.TP] = None, **kwargs) → None[source]

Used for actor function that do not yield.

logger = <Logger faust.agents.actor (WARNING)>
faust.agents.agent

Agent implementation.

class faust.agents.agent.Agent(fun: Callable[faust.types.streams.StreamT, Union[Coroutine[[Any, Any], None], Awaitable[None], AsyncIterable]], *, app: faust.types.app.AppT, name: str = None, channel: Union[str, faust.types.channels.ChannelT] = None, concurrency: int = 1, sink: Iterable[Union[AgentT, faust.types.channels.ChannelT, Callable[Any, Optional[Awaitable]]]] = None, on_error: Callable[[AgentT, BaseException], Awaitable] = None, supervisor_strategy: Type[mode.types.supervisors.SupervisorStrategyT] = None, help: str = None, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, isolated_partitions: bool = False, use_reply_headers: bool = None, **kwargs) → None[source]

Agent.

This is the type of object returned by the @app.agent decorator.

supervisor = None
on_init_dependencies() → Iterable[mode.types.services.ServiceT][source]

Return list of services dependencies required to start agent.

Return type

Iterable[ServiceT[]]

cancel() → None[source]

Cancel agent and its actor instances running in this process.

Return type

None

info() → Mapping[source]

Return agent attributes as a dictionary.

Return type

Mapping[~KT, +VT_co]

clone(*, cls: Type[faust.types.agents.AgentT] = None, **kwargs) → faust.types.agents.AgentT[source]

Create clone of this agent object.

Keyword arguments can be passed to override any argument supported by Agent.__init__.

Return type

AgentT[]

test_context(channel: faust.types.channels.ChannelT = None, supervisor_strategy: mode.types.supervisors.SupervisorStrategyT = None, on_error: Callable[[AgentT, BaseException], Awaitable] = None, **kwargs) → faust.types.agents.AgentTestWrapperT[source]

Create new unit-testing wrapper for this agent.

Return type

AgentTestWrapperT[]

actor_from_stream(stream: Optional[faust.types.streams.StreamT], *, index: int = None, active_partitions: Set[faust.types.tuples.TP] = None, channel: faust.types.channels.ChannelT = None) → faust.types.agents.ActorT[Union[AsyncIterable, Awaitable]][source]

Create new actor from stream.

Return type

ActorT[]

add_sink(sink: Union[AgentT, faust.types.channels.ChannelT, Callable[Any, Optional[Awaitable]]]) → None[source]

Add new sink to further handle results from this agent.

Return type

None

stream(channel: faust.types.channels.ChannelT = None, active_partitions: Set[faust.types.tuples.TP] = None, **kwargs) → faust.types.streams.StreamT[source]

Create underlying stream used by this agent.

Return type

StreamT[+T_co]

map(values: Union[AsyncIterable, Iterable], key: Union[bytes, faust.types.core._ModelT, Any, None] = None, reply_to: Union[AgentT, faust.types.channels.ChannelT, str] = None) → AsyncIterator[source]

RPC map operation on a list of values.

A map operation iterates over results as they arrive. See join() and kvjoin() if you want them in order.

Return type

AsyncIterator[+T_co]

kvmap(items: Union[AsyncIterable[Tuple[Union[bytes, faust.types.core._ModelT, Any, None], Union[bytes, faust.types.core._ModelT, Any]]], Iterable[Tuple[Union[bytes, faust.types.core._ModelT, Any, None], Union[bytes, faust.types.core._ModelT, Any]]]], reply_to: Union[AgentT, faust.types.channels.ChannelT, str] = None) → AsyncIterator[str][source]

RPC map operation on a list of (key, value) pairs.

A map operation iterates over results as they arrive. See join() and kvjoin() if you want them in order.

Return type

AsyncIterator[str]

get_topic_names() → Iterable[str][source]

Return list of topic names this agent subscribes to.

Return type

Iterable[str]

property channel

Return channel used by agent. :rtype: ChannelT[]

property channel_iterator

Return channel agent iterates over. :rtype: AsyncIterator[+T_co]

property label

Return human-readable description of agent. :rtype: str

property shortlabel

Return short description of agent. :rtype: str

logger = <Logger faust.agents.agent (WARNING)>
faust.agents.manager

Agent manager.

class faust.agents.manager.AgentManager(app: faust.types.app.AppT, **kwargs) → None[source]

Agent manager.

service_reset() → None[source]

Reset service state on restart.

Return type

None

cancel() → None[source]

Cancel all running agents.

Return type

None

update_topic_index() → None[source]

Update indices.

Return type

None

logger = <Logger faust.agents.manager (WARNING)>
faust.agents.models

Models used by agents internally.

class faust.agents.models.ReqRepRequest(value, reply_to, correlation_id, *, __strict__=True, __faust=None, **kwargs) → None[source]

Value wrapped in a Request-Reply request.

value

Describes a field.

Used for every field in Record so that they can be used in join’s /group_by etc.

Examples

>>> class Withdrawal(Record):
...    account_id: str
...    amount: float = 0.0
>>> Withdrawal.account_id
<FieldDescriptor: Withdrawal.account_id: str>
>>> Withdrawal.amount
<FieldDescriptor: Withdrawal.amount: float = 0.0>
Parameters
  • field (str) – Name of field.

  • type (Type) – Field value type.

  • required (bool) – Set to false if field is optional.

  • default (Any) – Default value when required=False.

Keyword Arguments
  • model (Type) – Model class the field belongs to.

  • parent (FieldDescriptorT) – parent field if any.

reply_to
correlation_id
asdict()
class faust.agents.models.ReqRepResponse(key, value, correlation_id, *, __strict__=True, __faust=None, **kwargs) → None[source]

Request-Reply response.

key

Describes a field.

Used for every field in Record so that they can be used in join’s /group_by etc.

Examples

>>> class Withdrawal(Record):
...    account_id: str
...    amount: float = 0.0
>>> Withdrawal.account_id
<FieldDescriptor: Withdrawal.account_id: str>
>>> Withdrawal.amount
<FieldDescriptor: Withdrawal.amount: float = 0.0>
Parameters
  • field (str) – Name of field.

  • type (Type) – Field value type.

  • required (bool) – Set to false if field is optional.

  • default (Any) – Default value when required=False.

Keyword Arguments
  • model (Type) – Model class the field belongs to.

  • parent (FieldDescriptorT) – parent field if any.

value

Describes a field.

Used for every field in Record so that they can be used in join’s /group_by etc.

Examples

>>> class Withdrawal(Record):
...    account_id: str
...    amount: float = 0.0
>>> Withdrawal.account_id
<FieldDescriptor: Withdrawal.account_id: str>
>>> Withdrawal.amount
<FieldDescriptor: Withdrawal.amount: float = 0.0>
Parameters
  • field (str) – Name of field.

  • type (Type) – Field value type.

  • required (bool) – Set to false if field is optional.

  • default (Any) – Default value when required=False.

Keyword Arguments
  • model (Type) – Model class the field belongs to.

  • parent (FieldDescriptorT) – parent field if any.

correlation_id
asdict()
faust.agents.replies

Agent replies: waiting for replies, sending them, etc.

class faust.agents.replies.ReplyPromise(reply_to: str, correlation_id: str, **kwargs) → None[source]

Reply promise can be await-ed to wait until result ready.

fulfill(correlation_id: str, value: Any) → None[source]

Fulfill promise: a reply was received.

Return type

None

class faust.agents.replies.BarrierState(reply_to: str, **kwargs) → None[source]

State of pending/complete barrier.

A barrier is a synchronization primitive that will wait until a group of coroutines have completed.

size = 0

This is the size while the messages are being sent. (it’s a tentative total, added to until the total is finalized).

total = 0

This is the actual total when all messages have been sent. It’s set by finalize().

fulfilled = 0

The number of results we have received.

pending = None

Set of pending replies that this barrier is composed of.

add(p: faust.agents.replies.ReplyPromise) → None[source]

Add promise to barrier.

Note

You can only add promises before the barrier is finalized using finalize().

Return type

None

finalize() → None[source]

Finalize this barrier.

After finalization you can not grow or shrink the size of the barrier.

Return type

None

fulfill(correlation_id: str, value: Any) → None[source]

Fulfill one of the promises in this barrier.

Once all promises in this barrier is fulfilled, the barrier will be ready.

Return type

None

get_nowait() → faust.agents.replies.ReplyTuple[source]

Return next reply, or raise asyncio.QueueEmpty.

Return type

ReplyTuple

iterate() → AsyncIterator[faust.agents.replies.ReplyTuple][source]

Iterate over results as they arrive.

Return type

AsyncIterator[ReplyTuple]

class faust.agents.replies.ReplyConsumer(app: faust.types.app.AppT, **kwargs) → None[source]

Consumer responsible for redelegation of replies received.

logger = <Logger faust.agents.replies (WARNING)>

Fixups

faust.fixups

Transport registry.

faust.fixups.by_name(name: Union[_T, str]) → _T
Return type

~_T

faust.fixups.by_url(url: Union[str, yarl.URL]) → _T

Get class associated with URL (scheme is used as alias key).

Return type

~_T

faust.fixups.fixups(app: faust.types.app.AppT) → Iterator[faust.types.fixups.FixupT][source]

Iterate over enabled fixups.

Fixups are installed by setuptools, using the ‘faust.fixups’ namespace.

Fixups modify the Faust library to work with frameworks such as Django.

Return type

Iterator[FixupT]

faust.fixups.base

Fixups - Base implementation.

class faust.fixups.base.Fixup(app: faust.types.app.AppT) → None[source]

Base class for fixups.

Fixups are things that hook into Faust to make things work for other frameworks, such as Django.

enabled() → bool[source]

Return if fixup should be enabled in this environment.

Return type

bool

autodiscover_modules() → Iterable[str][source]

Return list of additional autodiscover modules.

Return type

Iterable[str]

on_worker_init() → None[source]

Call when initializing worker/CLI commands.

Return type

None

faust.fixups.django

Django Fixups - Integration with Django.

class faust.fixups.django.Fixup(app: faust.types.app.AppT) → None[source]

Django fixup.

This fixup is enabled if

  1. the DJANGO_SETTINGS_MODULE environment variable is set,

  2. the django package is installed.

Once enabled it will modify the following features:

  • Autodiscovery

    If faust.App(autodiscovery=True), the Django fixup will automatically autodiscover agents/tasks/web views, and so on found in installed Django apps.

  • Setup

    The Django machinery will be set up when Faust commands are executed.

enabled() → bool[source]

Return True if Django is used in this environment.

Return type

bool

wait_for_django() → None[source]
Return type

None

autodiscover_modules() → Iterable[str][source]

Return list of additional autodiscover modules.

For Django we run autodiscovery in all packages listed in the INSTALLED_APPS setting (with support for custom app configurations).

Return type

Iterable[str]

on_worker_init() → None[source]

Initialize Django before worker/CLI command starts.

Return type

None

apps[source]

Return the Django app registry.

settings[source]

Return the Django settings object.

LiveCheck

faust.livecheck

LiveCheck - End-to-end testing of asynchronous systems.

class faust.livecheck.LiveCheck(id: str, *, test_topic_name: str = None, bus_topic_name: str = None, report_topic_name: str = None, bus_concurrency: int = None, test_concurrency: int = None, send_reports: bool = None, **kwargs) → None[source]

LiveCheck application.

SCAN_CATEGORIES = ['faust.agent', 'faust.command', 'faust.page', 'faust.service', 'faust.task', 'livecheck.case']
class Signal(name: str = '', case: faust.livecheck.signals._Case = None, index: int = -1) → None

Signal for test case using Kafka.

Used to wait for something to happen elsewhere.

class Case(*, app: faust.livecheck.case._LiveCheck, name: str, probability: float = None, warn_stalled_after: Union[datetime.timedelta, float, str] = None, active: bool = None, signals: Iterable[faust.livecheck.signals.BaseSignal] = None, test_expires: Union[datetime.timedelta, float, str] = None, frequency: Union[datetime.timedelta, float, str] = None, realtime_logs: bool = None, max_history: int = None, max_consecutive_failures: int = None, url_timeout_total: float = None, url_timeout_connect: float = None, url_error_retries: int = None, url_error_delay_min: float = None, url_error_delay_backoff: float = None, url_error_delay_max: float = None, **kwargs) → None

LiveCheck test case.

Runner

alias of faust.livecheck.runners.TestRunner

active = True
consecutive_failures = 0
property current_execution

Return the currently executing TestRunner in this task. :rtype: Optional[TestRunner]

property current_test

Return the currently active test in this task (if any). :rtype: Optional[TestExecution]

frequency = None
frequency_avg = None
property label

Return human-readable label for this test case. :rtype: str

last_fail = None
last_test_received = None
latency_avg = None
logger = <Logger faust.livecheck.case (WARNING)>
max_consecutive_failures = 30
max_history = 100
maybe_trigger(id: str = None, *args, **kwargs) → AsyncGenerator[Optional[faust.livecheck.models.TestExecution], None]

Schedule test execution, or not, based on probability setting.

Return type

AsyncGenerator[Optional[TestExecution], None]

probability = 0.5
realtime_logs = False
runtime_avg = None
property seconds_since_last_fail

Return number of seconds since any test failed. :rtype: Optional[float]

state = 'INIT'
state_transition_delay = 60.0
test_expires = datetime.timedelta(0, 10800)
total_failures = 0
url_error_delay_backoff = 1.5
url_error_delay_max = 5.0
url_error_delay_min = 0.5
url_error_retries = 10
url_timeout_connect = None
url_timeout_total = 300.0
warn_stalled_after = 1800.0
classmethod for_app(app: faust.types.app.AppT, *, prefix: str = 'livecheck-', web_port: int = 9999, test_topic_name: str = None, bus_topic_name: str = None, report_topic_name: str = None, bus_concurrency: int = None, test_concurrency: int = None, send_reports: bool = None, **kwargs) → faust.livecheck.app.LiveCheck[source]

Create LiveCheck application targeting specific app.

The target app will be used to configure the LiveCheck app.

Return type

LiveCheck[]

test_topic_name = 'livecheck'
bus_topic_name = 'livecheck-bus'
report_topic_name = 'livecheck-report'
bus_concurrency = 30

Number of concurrent actors processing signal events.

test_concurrency = 100

Number of concurrent actors executing test cases.

send_reports = True

Unset this if you don’t want reports to be sent to the report_topic_name topic.

property current_test

Return the current test context (if any). :rtype: Optional[TestExecution]

on_produce_attach_test_headers(sender: faust.types.app.AppT, key: bytes = None, value: bytes = None, partition: int = None, timestamp: float = None, headers: List[Tuple[str, bytes]] = None, **kwargs) → None[source]

Attach test headers to Kafka produce requests.

Return type

None

case(*, name: str = None, probability: float = None, warn_stalled_after: Union[datetime.timedelta, float, str] = datetime.timedelta(0, 1800), active: bool = None, test_expires: Union[datetime.timedelta, float, str] = None, frequency: Union[datetime.timedelta, float, str] = None, max_history: int = None, max_consecutive_failures: int = None, url_timeout_total: float = None, url_timeout_connect: float = None, url_error_retries: float = None, url_error_delay_min: float = None, url_error_delay_backoff: float = None, url_error_delay_max: float = None, base: Type[faust.livecheck.case.Case] = faust.livecheck.case.Case) → Callable[Type, faust.livecheck.case.Case][source]

Decorate class to be used as a test case.

Return type

Callable[[Type[+CT_co]], Case[]]

Returns

faust.livecheck.Case.

add_case(case: faust.livecheck.case.Case) → faust.livecheck.case.Case[source]

Add and register new test case.

Return type

Case[]

logger = <Logger faust.livecheck.app (WARNING)>
bus[source]

Topic used for signal communication.

pending_tests[source]

Topic used to keep pending test executions.

reports[source]

Topic used to log test reports.

class faust.livecheck.Case(*, app: faust.livecheck.case._LiveCheck, name: str, probability: float = None, warn_stalled_after: Union[datetime.timedelta, float, str] = None, active: bool = None, signals: Iterable[faust.livecheck.signals.BaseSignal] = None, test_expires: Union[datetime.timedelta, float, str] = None, frequency: Union[datetime.timedelta, float, str] = None, realtime_logs: bool = None, max_history: int = None, max_consecutive_failures: int = None, url_timeout_total: float = None, url_timeout_connect: float = None, url_error_retries: int = None, url_error_delay_min: float = None, url_error_delay_backoff: float = None, url_error_delay_max: float = None, **kwargs) → None[source]

LiveCheck test case.

Runner

alias of faust.livecheck.runners.TestRunner

state = 'INIT'

Current state of this test.

last_test_received = None

The warn_stalled_after timer uses this to keep track of either when a test was last received, or the last time the timer timed out.

last_fail = None

Timestamp of when the suite last failed.

runtime_avg = None
latency_avg = None
frequency_avg = None
state_transition_delay = 60.0
consecutive_failures = 0
total_failures = 0
name = None

Name of the test If not set this will be generated out of the subclass name.

active = True
probability = 0.5

Probability of test running when live traffic is going through.

warn_stalled_after = 1800.0

Timeout in seconds for when after we warn that nothing is processing.

test_expires = datetime.timedelta(0, 10800)
frequency = None

How often we execute the test using fake data (define Case.make_fake_request()).

Set to None if production traffic is frequent enough to satisfy warn_stalled_after.

realtime_logs = False
max_history = 100

Max items to store in latency_history and runtime_history.

max_consecutive_failures = 30
url_timeout_total = 300.0
url_timeout_connect = None
url_error_retries = 10
url_error_delay_min = 0.5
url_error_delay_backoff = 1.5
url_error_delay_max = 5.0
maybe_trigger(id: str = None, *args, **kwargs) → AsyncGenerator[Optional[faust.livecheck.models.TestExecution], None][source]

Schedule test execution, or not, based on probability setting.

Return type

AsyncGenerator[Optional[TestExecution], None]

logger = <Logger faust.livecheck.case (WARNING)>
property seconds_since_last_fail

Return number of seconds since any test failed. :rtype: Optional[float]

property current_test

Return the currently active test in this task (if any). :rtype: Optional[TestExecution]

property current_execution

Return the currently executing TestRunner in this task. :rtype: Optional[TestRunner]

property label

Return human-readable label for this test case. :rtype: str

class faust.livecheck.Signal(name: str = '', case: faust.livecheck.signals._Case = None, index: int = -1) → None[source]

Signal for test case using Kafka.

Used to wait for something to happen elsewhere.

class faust.livecheck.TestRunner(case: faust.livecheck.runners._Case, test: faust.livecheck.models.TestExecution, started: float) → None[source]

Execute and keep track of test instance.

state = 'INIT'
report = None
error = None
log_info(msg: str, *args) → None[source]

Log information related to the current execution.

Return type

None

end() → None[source]

End test execution.

Return type

None

faust.livecheck.current_test() → Optional[faust.livecheck.models.TestExecution][source]

Return information about the current test (if any).

Return type

Optional[TestExecution]

faust.livecheck.app

LiveCheck - Faust Application.

class faust.livecheck.app.LiveCheck(id: str, *, test_topic_name: str = None, bus_topic_name: str = None, report_topic_name: str = None, bus_concurrency: int = None, test_concurrency: int = None, send_reports: bool = None, **kwargs) → None[source]

LiveCheck application.

SCAN_CATEGORIES = ['faust.agent', 'faust.command', 'faust.page', 'faust.service', 'faust.task', 'livecheck.case']
class Signal(name: str = '', case: faust.livecheck.signals._Case = None, index: int = -1) → None

Signal for test case using Kafka.

Used to wait for something to happen elsewhere.

class Case(*, app: faust.livecheck.case._LiveCheck, name: str, probability: float = None, warn_stalled_after: Union[datetime.timedelta, float, str] = None, active: bool = None, signals: Iterable[faust.livecheck.signals.BaseSignal] = None, test_expires: Union[datetime.timedelta, float, str] = None, frequency: Union[datetime.timedelta, float, str] = None, realtime_logs: bool = None, max_history: int = None, max_consecutive_failures: int = None, url_timeout_total: float = None, url_timeout_connect: float = None, url_error_retries: int = None, url_error_delay_min: float = None, url_error_delay_backoff: float = None, url_error_delay_max: float = None, **kwargs) → None

LiveCheck test case.

Runner

alias of faust.livecheck.runners.TestRunner

active = True
consecutive_failures = 0
property current_execution

Return the currently executing TestRunner in this task. :rtype: Optional[TestRunner]

property current_test

Return the currently active test in this task (if any). :rtype: Optional[TestExecution]

frequency = None
frequency_avg = None
property label

Return human-readable label for this test case. :rtype: str

last_fail = None
last_test_received = None
latency_avg = None
logger = <Logger faust.livecheck.case (WARNING)>
max_consecutive_failures = 30
max_history = 100
maybe_trigger(id: str = None, *args, **kwargs) → AsyncGenerator[Optional[faust.livecheck.models.TestExecution], None]

Schedule test execution, or not, based on probability setting.

Return type

AsyncGenerator[Optional[TestExecution], None]

probability = 0.5
realtime_logs = False
runtime_avg = None
property seconds_since_last_fail

Return number of seconds since any test failed. :rtype: Optional[float]

state = 'INIT'
state_transition_delay = 60.0
test_expires = datetime.timedelta(0, 10800)
total_failures = 0
url_error_delay_backoff = 1.5
url_error_delay_max = 5.0
url_error_delay_min = 0.5
url_error_retries = 10
url_timeout_connect = None
url_timeout_total = 300.0
warn_stalled_after = 1800.0
classmethod for_app(app: faust.types.app.AppT, *, prefix: str = 'livecheck-', web_port: int = 9999, test_topic_name: str = None, bus_topic_name: str = None, report_topic_name: str = None, bus_concurrency: int = None, test_concurrency: int = None, send_reports: bool = None, **kwargs) → faust.livecheck.app.LiveCheck[source]

Create LiveCheck application targeting specific app.

The target app will be used to configure the LiveCheck app.

Return type

LiveCheck[]

test_topic_name = 'livecheck'
bus_topic_name = 'livecheck-bus'
report_topic_name = 'livecheck-report'
bus_concurrency = 30

Number of concurrent actors processing signal events.

test_concurrency = 100

Number of concurrent actors executing test cases.

send_reports = True

Unset this if you don’t want reports to be sent to the report_topic_name topic.

property current_test

Return the current test context (if any). :rtype: Optional[TestExecution]

on_produce_attach_test_headers(sender: faust.types.app.AppT, key: bytes = None, value: bytes = None, partition: int = None, timestamp: float = None, headers: List[Tuple[str, bytes]] = None, **kwargs) → None[source]

Attach test headers to Kafka produce requests.

Return type

None

case(*, name: str = None, probability: float = None, warn_stalled_after: Union[datetime.timedelta, float, str] = datetime.timedelta(0, 1800), active: bool = None, test_expires: Union[datetime.timedelta, float, str] = None, frequency: Union[datetime.timedelta, float, str] = None, max_history: int = None, max_consecutive_failures: int = None, url_timeout_total: float = None, url_timeout_connect: float = None, url_error_retries: float = None, url_error_delay_min: float = None, url_error_delay_backoff: float = None, url_error_delay_max: float = None, base: Type[faust.livecheck.case.Case] = faust.livecheck.case.Case) → Callable[Type, faust.livecheck.case.Case][source]

Decorate class to be used as a test case.

Return type

Callable[[Type[+CT_co]], Case[]]

Returns

faust.livecheck.Case.

add_case(case: faust.livecheck.case.Case) → faust.livecheck.case.Case[source]

Add and register new test case.

Return type

Case[]

logger = <Logger faust.livecheck.app (WARNING)>
bus[source]

Topic used for signal communication.

pending_tests[source]

Topic used to keep pending test executions.

reports[source]

Topic used to log test reports.

faust.livecheck.case

LiveCheck - Test cases.

class faust.livecheck.case.Case(*, app: faust.livecheck.case._LiveCheck, name: str, probability: float = None, warn_stalled_after: Union[datetime.timedelta, float, str] = None, active: bool = None, signals: Iterable[faust.livecheck.signals.BaseSignal] = None, test_expires: Union[datetime.timedelta, float, str] = None, frequency: Union[datetime.timedelta, float, str] = None, realtime_logs: bool = None, max_history: int = None, max_consecutive_failures: int = None, url_timeout_total: float = None, url_timeout_connect: float = None, url_error_retries: int = None, url_error_delay_min: float = None, url_error_delay_backoff: float = None, url_error_delay_max: float = None, **kwargs) → None[source]

LiveCheck test case.

Runner

alias of faust.livecheck.runners.TestRunner

state = 'INIT'

Current state of this test.

last_test_received = None

The warn_stalled_after timer uses this to keep track of either when a test was last received, or the last time the timer timed out.

last_fail = None

Timestamp of when the suite last failed.

runtime_avg = None
latency_avg = None
frequency_avg = None
state_transition_delay = 60.0
consecutive_failures = 0
total_failures = 0
name = None

Name of the test If not set this will be generated out of the subclass name.

active = True
probability = 0.5

Probability of test running when live traffic is going through.

warn_stalled_after = 1800.0

Timeout in seconds for when after we warn that nothing is processing.

test_expires = datetime.timedelta(0, 10800)
frequency = None

How often we execute the test using fake data (define Case.make_fake_request()).

Set to None if production traffic is frequent enough to satisfy warn_stalled_after.

realtime_logs = False
max_history = 100

Max items to store in latency_history and runtime_history.

max_consecutive_failures = 30
url_timeout_total = 300.0
url_timeout_connect = None
url_error_retries = 10
url_error_delay_min = 0.5
url_error_delay_backoff = 1.5
url_error_delay_max = 5.0
maybe_trigger(id: str = None, *args, **kwargs) → AsyncGenerator[Optional[faust.livecheck.models.TestExecution], None][source]

Schedule test execution, or not, based on probability setting.

Return type

AsyncGenerator[Optional[TestExecution], None]

logger = <Logger faust.livecheck.case (WARNING)>
property seconds_since_last_fail

Return number of seconds since any test failed. :rtype: Optional[float]

property current_test

Return the currently active test in this task (if any). :rtype: Optional[TestExecution]

property current_execution

Return the currently executing TestRunner in this task. :rtype: Optional[TestRunner]

property label

Return human-readable label for this test case. :rtype: str

faust.livecheck.exceptions

LiveCheck - related exceptions.

exception faust.livecheck.exceptions.LiveCheckError[source]

Generic base class for LiveCheck test errors.

exception faust.livecheck.exceptions.SuiteFailed[source]

The whole test suite failed (not just a test).

exception faust.livecheck.exceptions.ServiceDown[source]

Suite failed after a depending service is not responding.

Used when for example a test case is periodically sending requests to a HTTP service, and that HTTP server is not responding.

exception faust.livecheck.exceptions.SuiteStalled[source]

The suite is not running.

Raised when warn_stalled_after=3600 is set and there has not been any execution requests in the last hour.

exception faust.livecheck.exceptions.TestSkipped[source]

Test was skipped.

exception faust.livecheck.exceptions.TestFailed[source]

The test failed an assertion.

exception faust.livecheck.exceptions.TestRaised[source]

The test raised an exception.

exception faust.livecheck.exceptions.TestTimeout[source]

The test timed out waiting for an event or during processing.

faust.livecheck.locals

Locals - Current test & execution context.

faust.livecheck.locals.current_execution() → Optional[faust.livecheck.locals._TestRunner][source]

Return the current TestRunner.

Return type

Optional[_TestRunner]

faust.livecheck.locals.current_test() → Optional[faust.livecheck.models.TestExecution][source]

Return information about the current test (if any).

Return type

Optional[TestExecution]

faust.livecheck.models

LiveCheck - Models.

class faust.livecheck.models.State[source]

Test execution status.

INIT = 'INIT'
PASS = 'PASS'
FAIL = 'FAIL'
ERROR = 'ERROR'
TIMEOUT = 'TIMEOUT'
STALL = 'STALL'
SKIP = 'SKIP'
is_ok() → bool[source]

Return True if this is considered an OK state.

Return type

bool

class faust.livecheck.models.SignalEvent(signal_name, case_name, key, value, *, __strict__=True, __faust=None, **kwargs) → None[source]

Signal sent to test (see faust.livecheck.signals.Signal).

signal_name
case_name
key

Describes a field.

Used for every field in Record so that they can be used in join’s /group_by etc.

Examples

>>> class Withdrawal(Record):
...    account_id: str
...    amount: float = 0.0
>>> Withdrawal.account_id
<FieldDescriptor: Withdrawal.account_id: str>
>>> Withdrawal.amount
<FieldDescriptor: Withdrawal.amount: float = 0.0>
Parameters
  • field (str) – Name of field.

  • type (Type) – Field value type.

  • required (bool) – Set to false if field is optional.

  • default (Any) – Default value when required=False.

Keyword Arguments
  • model (Type) – Model class the field belongs to.

  • parent (FieldDescriptorT) – parent field if any.

value

Describes a field.

Used for every field in Record so that they can be used in join’s /group_by etc.

Examples

>>> class Withdrawal(Record):
...    account_id: str
...    amount: float = 0.0
>>> Withdrawal.account_id
<FieldDescriptor: Withdrawal.account_id: str>
>>> Withdrawal.amount
<FieldDescriptor: Withdrawal.amount: float = 0.0>
Parameters
  • field (str) – Name of field.

  • type (Type) – Field value type.

  • required (bool) – Set to false if field is optional.

  • default (Any) – Default value when required=False.

Keyword Arguments
  • model (Type) – Model class the field belongs to.

  • parent (FieldDescriptorT) – parent field if any.

asdict()
class faust.livecheck.models.TestExecution(id, case_name, timestamp, test_args, test_kwargs, expires, *, __strict__=True, __faust=None, **kwargs) → None[source]

Requested test execution.

id
case_name
timestamp
test_args

Describes a field.

Used for every field in Record so that they can be used in join’s /group_by etc.

Examples

>>> class Withdrawal(Record):
...    account_id: str
...    amount: float = 0.0
>>> Withdrawal.account_id
<FieldDescriptor: Withdrawal.account_id: str>
>>> Withdrawal.amount
<FieldDescriptor: Withdrawal.amount: float = 0.0>
Parameters
  • field (str) – Name of field.

  • type (Type) – Field value type.

  • required (bool) – Set to false if field is optional.

  • default (Any) – Default value when required=False.

Keyword Arguments
  • model (Type) – Model class the field belongs to.

  • parent (FieldDescriptorT) – parent field if any.

test_kwargs

Describes a field.

Used for every field in Record so that they can be used in join’s /group_by etc.

Examples

>>> class Withdrawal(Record):
...    account_id: str
...    amount: float = 0.0
>>> Withdrawal.account_id
<FieldDescriptor: Withdrawal.account_id: str>
>>> Withdrawal.amount
<FieldDescriptor: Withdrawal.amount: float = 0.0>
Parameters
  • field (str) – Name of field.

  • type (Type) – Field value type.

  • required (bool) – Set to false if field is optional.

  • default (Any) – Default value when required=False.

Keyword Arguments
  • model (Type) – Model class the field belongs to.

  • parent (FieldDescriptorT) – parent field if any.

expires
classmethod from_headers(headers: Mapping) → Optional[faust.livecheck.models.TestExecution][source]

Create instance from mapping of HTTP/Kafka headers.

Return type

Optional[TestExecution]

as_headers() → Mapping[source]

Return test metadata as mapping of HTTP/Kafka headers.

Return type

Mapping[~KT, +VT_co]

ident[source]

Return long identifier for this test used in logs.

shortident[source]

Return short identifier for this test used in logs.

human_date[source]

Return human-readable description of test timestamp.

was_issued_today[source]

Return True if test was issued on todays date.

is_expired[source]

Return True if this test already expired.

short_case_name[source]

Return abbreviated case name.

asdict()
class faust.livecheck.models.TestReport(case_name, state, signal_latency, test=None, runtime=None, error=None, traceback=None, *, __strict__=True, __faust=None, **kwargs) → None[source]

Report after test execution.

case_name
state

Describes a field.

Used for every field in Record so that they can be used in join’s /group_by etc.

Examples

>>> class Withdrawal(Record):
...    account_id: str
...    amount: float = 0.0
>>> Withdrawal.account_id
<FieldDescriptor: Withdrawal.account_id: str>
>>> Withdrawal.amount
<FieldDescriptor: Withdrawal.amount: float = 0.0>
Parameters
  • field (str) – Name of field.

  • type (Type) – Field value type.

  • required (bool) – Set to false if field is optional.

  • default (Any) – Default value when required=False.

Keyword Arguments
  • model (Type) – Model class the field belongs to.

  • parent (FieldDescriptorT) – parent field if any.

test

Describes a field.

Used for every field in Record so that they can be used in join’s /group_by etc.

Examples

>>> class Withdrawal(Record):
...    account_id: str
...    amount: float = 0.0
>>> Withdrawal.account_id
<FieldDescriptor: Withdrawal.account_id: str>
>>> Withdrawal.amount
<FieldDescriptor: Withdrawal.amount: float = 0.0>
Parameters
  • field (str) – Name of field.

  • type (Type) – Field value type.

  • required (bool) – Set to false if field is optional.

  • default (Any) – Default value when required=False.

Keyword Arguments
  • model (Type) – Model class the field belongs to.

  • parent (FieldDescriptorT) – parent field if any.

runtime
signal_latency
error
traceback
asdict()
faust.livecheck.patches

Patches - LiveCheck integration with other frameworks/libraries.

faust.livecheck.patches.patch_all() → None[source]

Apply all LiveCheck monkey patches.

Return type

None

faust.livecheck.patches.aiohttp

LiveCheck aiohttp integration.

faust.livecheck.patches.aiohttp.patch_all() → None[source]

Patch all aiohttp functions to integrate with LiveCheck.

Return type

None

faust.livecheck.patches.aiohttp.patch_aiohttp_session() → None[source]

Patch aiohttp.ClientSession to integrate with LiveCheck.

If there is any currently active test, we will use that to forward LiveCheck HTTP headers to the new HTTP request.

Return type

None

class faust.livecheck.patches.aiohttp.LiveCheckMiddleware[source]

LiveCheck support for aiohttp web servers.

This middleware is applied to all incoming web requests, and is used to extract LiveCheck HTTP headers.

If the web request is configured with the correct set of LiveCheck headers, we will use that to set the “current test” context.

faust.livecheck.runners

LiveCheck - Test runner.

class faust.livecheck.runners.TestRunner(case: faust.livecheck.runners._Case, test: faust.livecheck.models.TestExecution, started: float) → None[source]

Execute and keep track of test instance.

state = 'INIT'
report = None
error = None
log_info(msg: str, *args) → None[source]

Log information related to the current execution.

Return type

None

end() → None[source]

End test execution.

Return type

None

faust.livecheck.signals

LiveCheck Signals - Test communication and synchronization.

class faust.livecheck.signals.BaseSignal(name: str = '', case: faust.livecheck.signals._Case = None, index: int = -1) → None[source]

Generic base class for signals.

clone(**kwargs) → faust.livecheck.signals.BaseSignal[source]

Clone this signal using keyword arguments.

Return type

BaseSignal[~VT]

class faust.livecheck.signals.Signal(name: str = '', case: faust.livecheck.signals._Case = None, index: int = -1) → None[source]

Signal for test case using Kafka.

Used to wait for something to happen elsewhere.

Models

faust.models.base

Model descriptions.

The model describes the components of a data structure, kind of like a struct in C, but there’s no limitation of what type of data structure the model is, or what it’s used for.

A record (faust.models.record) is a model type that serialize into dictionaries, so the model describe the fields, and their types:

>>> class Point(Record):
...    x: int
...    y: int

>>> p = Point(10, 3)
>>> assert p.x == 10
>>> assert p.y == 3
>>> p
<Point: x=10, y=3>
>>> payload = p.dumps(serializer='json')
'{"x": 10, "y": 3, "__faust": {"ns": "__main__.Point"}}'
>>> p2 = Record.loads(payload)
>>> p2
<Point: x=10, y=3>

Models are mainly used for describing the data in messages: both keys and values can be described as models.

faust.models.base.registry = {'@ClientAssignment': <class 'faust.assignor.client_assignment.ClientAssignment'>, '@ClientMetadata': <class 'faust.assignor.client_assignment.ClientMetadata'>, '@ClusterAssignment': <class 'faust.assignor.cluster_assignment.ClusterAssignment'>, '@ReqRepRequest': <class 'faust.agents.models.ReqRepRequest'>, '@ReqRepResponse': <class 'faust.agents.models.ReqRepResponse'>, '@SetManagerOperation': <class 'faust.tables.sets.SetManagerOperation'>, 'faust.agents.models.ModelReqRepRequest': <class 'faust.agents.models.ModelReqRepRequest'>, 'faust.agents.models.ModelReqRepResponse': <class 'faust.agents.models.ModelReqRepResponse'>, 'faust.livecheck.models.SignalEvent': <class 'faust.livecheck.models.SignalEvent'>, 'faust.livecheck.models.TestExecution': <class 'faust.livecheck.models.TestExecution'>, 'faust.livecheck.models.TestReport': <class 'faust.livecheck.models.TestReport'>}

Global map of namespace -> Model, used to find model classes by name. Every single model defined is added here automatically when a model class is defined.

faust.models.base.maybe_model(arg: Any) → Any[source]

Convert argument to model if possible.

Return type

Any

class faust.models.base.Model(*args, **kwargs) → None[source]

Meta description model for serialization.

classmethod loads(s: bytes, *, default_serializer: Union[faust.types.codecs.CodecT, str, None] = None, serializer: Union[faust.types.codecs.CodecT, str, None] = None) → faust.types.models.ModelT[source]

Deserialize model object from bytes.

Keyword Arguments

serializer (CodecArg) – Default serializer to use if no custom serializer was set for this model subclass.

Return type

ModelT

abstract to_representation() → Any[source]

Convert object to JSON serializable object.

Return type

Any

is_valid() → bool[source]
Return type

bool

validate() → List[faust.exceptions.ValidationError][source]
Return type

List[ValidationError]

validate_or_raise() → None[source]
Return type

None

property validation_errors
Return type

List[ValidationError]

derive(*objects, **fields) → faust.types.models.ModelT[source]

Derive new model with certain fields changed.

Return type

ModelT

dumps(*, serializer: Union[faust.types.codecs.CodecT, str, None] = None) → bytes[source]

Serialize object to the target serialization format.

Return type

bytes

faust.models.fields
class faust.models.fields.FieldDescriptor(*, field: str = None, type: Type[T] = None, model: Type[faust.types.models.ModelT] = None, required: bool = True, default: T = None, parent: faust.types.models.FieldDescriptorT = None, coerce: bool = None, generic_type: Type = None, member_type: Type = None, exclude: bool = None, date_parser: Callable[Any, datetime.datetime] = None, **options) → None[source]

Describes a field.

Used for every field in Record so that they can be used in join’s /group_by etc.

Examples

>>> class Withdrawal(Record):
...    account_id: str
...    amount: float = 0.0
>>> Withdrawal.account_id
<FieldDescriptor: Withdrawal.account_id: str>
>>> Withdrawal.amount
<FieldDescriptor: Withdrawal.amount: float = 0.0>
Parameters
  • field (str) – Name of field.

  • type (Type) – Field value type.

  • required (bool) – Set to false if field is optional.

  • default (Any) – Default value when required=False.

Keyword Arguments
  • model (Type) – Model class the field belongs to.

  • parent (FieldDescriptorT) – parent field if any.

field = None

Name of attribute on Model.

type = None

Type of value (e.g. int, or Optional[int])).

model = None

The model class this field is associated with.

required = True

Set if a value for this field is required (cannot be None).

default = None

Default value for non-required field.

generic_type = None

If this holds a generic type such as list/set/dict then this holds the type of collection.

coerce = False

Coerce value to field descriptors type. This means assigning a value to this field, will first convert the value to the requested type. For example for a FloatField the input will be converted to float, and passing any value that cannot be converted to float will raise an error.

If coerce is not enabled you can store any type of value.

Note: None is usually considered a valid value for any field but this depends on the descriptor type.

exclude = False

Exclude field from model representation. This means the field will not be part of the serialized structure. (Model.dumps(), Model.asdict(), and Model.to_representation()).

clone(**kwargs) → faust.types.models.FieldDescriptorT[source]
Return type

FieldDescriptorT[~T]

as_dict() → Mapping[str, Any][source]
Return type

Mapping[str, Any]

validate(value: T) → Iterable[faust.exceptions.ValidationError][source]
Return type

Iterable[ValidationError]

prepare_value(value: Any) → Optional[T][source]
Return type

Optional[~T]

should_coerce(value: Any) → bool[source]
Return type

bool

getattr(obj: faust.types.models.ModelT) → T[source]

Get attribute from model recursively.

Supports recursive lookups e.g. model.getattr('x.y.z').

Return type

~T

validation_error(reason: str) → faust.exceptions.ValidationError[source]
Return type

ValidationError

property ident

Return the fields identifier. :rtype: str

class faust.models.fields.NumberField(*, max_value: int = None, min_value: int = None, **kwargs) → None[source]
validate(value: T) → Iterable[faust.exceptions.ValidationError][source]
Return type

Iterable[ValidationError]

class faust.models.fields.IntegerField(*, max_value: int = None, min_value: int = None, **kwargs) → None[source]
prepare_value(value: Any) → Optional[int][source]
Return type

Optional[int]

class faust.models.fields.FloatField(*, max_value: int = None, min_value: int = None, **kwargs) → None[source]
prepare_value(value: Any) → Optional[float][source]
Return type

Optional[float]

class faust.models.fields.DecimalField(*, max_digits: int = None, max_decimal_places: int = None, **kwargs) → None[source]
max_digits = None
max_decimal_places = None
prepare_value(value: Any) → Optional[decimal.Decimal][source]
Return type

Optional[Decimal]

validate(value: decimal.Decimal) → Iterable[faust.exceptions.ValidationError][source]
Return type

Iterable[ValidationError]

class faust.models.fields.StringField(*, max_length: int = None, min_length: int = None, trim_whitespace: bool = False, allow_blank: bool = False, **kwargs) → None[source]
prepare_value(value: Any) → Optional[str][source]
Return type

Optional[str]

class faust.models.fields.DatetimeField(*, field: str = None, type: Type[T] = None, model: Type[faust.types.models.ModelT] = None, required: bool = True, default: T = None, parent: faust.types.models.FieldDescriptorT = None, coerce: bool = None, generic_type: Type = None, member_type: Type = None, exclude: bool = None, date_parser: Callable[Any, datetime.datetime] = None, **options) → None[source]
prepare_value(value: Any) → Optional[datetime.datetime][source]
Return type

Optional[datetime]

class faust.models.fields.BytesField(*, encoding: str = None, errors: str = None, **kwargs) → None[source]
encoding = 'utf-8'
errors = 'strict'
prepare_value(value: Any) → Optional[bytes][source]
Return type

Optional[bytes]

faust.models.fields.field_for_type(typ: Type) → Type[faust.types.models.FieldDescriptorT][source]
Return type

Type[FieldDescriptorT[~T]]

faust.models.record

Record - Dictionary Model.

class faust.models.record.Record → None[source]

Describes a model type that is a record (Mapping).

Examples

>>> class LogEvent(Record, serializer='json'):
...     severity: str
...     message: str
...     timestamp: float
...     optional_field: str = 'default value'
>>> event = LogEvent(
...     severity='error',
...     message='Broken pact',
...     timestamp=666.0,
... )
>>> event.severity
'error'
>>> serialized = event.dumps()
'{"severity": "error", "message": "Broken pact", "timestamp": 666.0}'
>>> restored = LogEvent.loads(serialized)
<LogEvent: severity='error', message='Broken pact', timestamp=666.0>
>>> # You can also subclass a Record to create a new record
>>> # with additional fields
>>> class RemoteLogEvent(LogEvent):
...     url: str
>>> # You can also refer to record fields and pass them around:
>>> LogEvent.severity
>>> <FieldDescriptor: LogEvent.severity (str)>
classmethod from_data(data: Mapping, *, preferred_type: Type[faust.types.models.ModelT] = None) → faust.models.record.Record[source]

Create model object from Python dictionary.

Return type

Record

to_representation() → Mapping[str, Any][source]

Convert model to its Python generic counterpart.

Records will be converted to dictionary.

Return type

Mapping[str, Any]

asdict() → Dict[str, Any][source]

Convert record to Python dictionary.

Return type

Dict[str, Any]

Sensors

faust.sensors

Sensors.

class faust.sensors.Monitor(*, max_avg_history: int = None, max_commit_latency_history: int = None, max_send_latency_history: int = None, max_assignment_latency_history: int = None, messages_sent: int = 0, tables: MutableMapping[str, faust.sensors.monitor.TableState] = None, messages_active: int = 0, events_active: int = 0, messages_received_total: int = 0, messages_received_by_topic: Counter[str] = None, events_total: int = 0, events_by_stream: Counter[faust.types.streams.StreamT] = None, events_by_task: Counter[_asyncio.Task] = None, events_runtime: Deque[float] = None, commit_latency: Deque[float] = None, send_latency: Deque[float] = None, assignment_latency: Deque[float] = None, events_s: int = 0, messages_s: int = 0, events_runtime_avg: float = 0.0, topic_buffer_full: Counter[faust.types.topics.TopicT] = None, rebalances: int = None, rebalance_return_latency: Deque[float] = None, rebalance_end_latency: Deque[float] = None, rebalance_return_avg: float = 0.0, rebalance_end_avg: float = 0.0, time: Callable[float] = <built-in function monotonic>, **kwargs) → None[source]

Default Faust Sensor.

This is the default sensor, recording statistics about events, etc.

send_errors = 0

Number of produce operations that ended in error.

assignments_completed = 0

Number of partition assignments completed.

assignments_failed = 0

Number of partitions assignments that failed.

max_avg_history = 100

Max number of total run time values to keep to build average.

max_commit_latency_history = 30

Max number of commit latency numbers to keep.

max_send_latency_history = 30

Max number of send latency numbers to keep.

max_assignment_latency_history = 30

Max number of assignment latency numbers to keep.

rebalances = 0

Number of rebalances seen by this worker.

tables = None

Mapping of tables

commit_latency = None

Deque of commit latency values

send_latency = None

Deque of send latency values

assignment_latency = None

Deque of assignment latency values.

rebalance_return_latency = None

Deque of previous n rebalance return latencies.

rebalance_end_latency = None

Deque of previous n rebalance end latencies.

rebalance_return_avg = 0.0

Average rebalance return latency.

rebalance_end_avg = 0.0

Average rebalance end latency.

messages_active = 0

Number of messages currently being processed.

messages_received_total = 0

Number of messages processed in total.

messages_received_by_topic = None

Count of messages received by topic

messages_sent = 0

Number of messages sent in total.

messages_sent_by_topic = None

Number of messages sent by topic.

messages_s = 0

Number of messages being processed this second.

events_active = 0

Number of events currently being processed.

events_total = 0

Number of events processed in total.

events_by_task = None

Count of events processed by task

events_by_stream = None

Count of events processed by stream

events_s = 0

Number of events being processed this second.

events_runtime_avg = 0.0

Average event runtime over the last second.

events_runtime = None

Deque of run times used for averages

topic_buffer_full = None

Counter of times a topics buffer was full

metric_counts = None

Arbitrary counts added by apps

tp_committed_offsets = None

Last committed offsets by TopicPartition

tp_read_offsets = None

Last read offsets by TopicPartition

tp_end_offsets = None

Log end offsets by TopicPartition

secs_since(start_time: float) → float[source]

Given timestamp start, return number of seconds since that time.

Return type

float

ms_since(start_time: float) → float[source]

Given timestamp start, return number of ms since that time.

Return type

float

logger = <Logger faust.sensors.monitor (WARNING)>
secs_to_ms(timestamp: float) → float[source]

Convert seconds to milliseconds.

Return type

float

asdict() → Mapping[source]

Return monitor state as dictionary.

Return type

Mapping[~KT, +VT_co]

on_message_in(tp: faust.types.tuples.TP, offset: int, message: faust.types.tuples.Message) → None[source]

Call before message is delegated to streams.

Return type

None

on_stream_event_in(tp: faust.types.tuples.TP, offset: int, stream: faust.types.streams.StreamT, event: faust.types.events.EventT) → Optional[Dict][source]

Call when stream starts processing an event.

Return type

Optional[Dict[~KT, ~VT]]

on_stream_event_out(tp: faust.types.tuples.TP, offset: int, stream: faust.types.streams.StreamT, event: faust.types.events.EventT, state: Dict = None) → None[source]

Call when stream is done processing an event.

Return type

None

on_topic_buffer_full(topic: faust.types.topics.TopicT) → None[source]

Call when conductor topic buffer is full and has to wait.

Return type

None

on_message_out(tp: faust.types.tuples.TP, offset: int, message: faust.types.tuples.Message) → None[source]

Call when message is fully acknowledged and can be committed.

Return type

None

on_table_get(table: faust.types.tables.CollectionT, key: Any) → None[source]

Call when value in table is retrieved.

Return type

None

on_table_set(table: faust.types.tables.CollectionT, key: Any, value: Any) → None[source]

Call when new value for key in table is set.

Return type

None

on_table_del(table: faust.types.tables.CollectionT, key: Any) → None[source]

Call when key in a table is deleted.

Return type

None

on_commit_initiated(consumer: faust.types.transports.ConsumerT) → Any[source]

Consumer is about to commit topic offset.

Return type

Any

on_commit_completed(consumer: faust.types.transports.ConsumerT, state: Any) → None[source]

Call when consumer commit offset operation completed.

Return type

None

on_send_initiated(producer: faust.types.transports.ProducerT, topic: str, message: faust.types.tuples.PendingMessage, keysize: int, valsize: int) → Any[source]

Call when message added to producer buffer.

Return type

Any

on_send_completed(producer: faust.types.transports.ProducerT, state: Any, metadata: faust.types.tuples.RecordMetadata) → None[source]

Call when producer finished sending message.

Return type

None

on_send_error(producer: faust.types.transports.ProducerT, exc: BaseException, state: Any) → None[source]

Call when producer was unable to publish message.

Return type

None

count(metric_name: str, count: int = 1) → None[source]

Count metric by name.

Return type

None

on_tp_commit(tp_offsets: MutableMapping[faust.types.tuples.TP, int]) → None[source]

Call when offset in topic partition is committed.

Return type

None

track_tp_end_offset(tp: faust.types.tuples.TP, offset: int) → None[source]

Track new topic partition end offset for monitoring lags.

Return type

None

on_assignment_start(assignor: faust.types.assignor.PartitionAssignorT) → Dict[source]

Partition assignor is starting to assign partitions.

Return type

Dict[~KT, ~VT]

on_assignment_error(assignor: faust.types.assignor.PartitionAssignorT, state: Dict, exc: BaseException) → None[source]

Partition assignor did not complete assignor due to error.

Return type

None

on_assignment_completed(assignor: faust.types.assignor.PartitionAssignorT, state: Dict) → None[source]

Partition assignor completed assignment.

Return type

None

on_rebalance_start(app: faust.types.app.AppT) → Dict[source]

Cluster rebalance in progress.

Return type

Dict[~KT, ~VT]

on_rebalance_return(app: faust.types.app.AppT, state: Dict) → None[source]

Consumer replied assignment is done to broker.

Return type

None

on_rebalance_end(app: faust.types.app.AppT, state: Dict) → None[source]

Cluster rebalance fully completed (including recovery).

Return type

None

class faust.sensors.Sensor(*, beacon: mode.utils.types.trees.NodeT = None, loop: asyncio.events.AbstractEventLoop = None) → None[source]

Base class for sensors.

This sensor does not do anything at all, but can be subclassed to create new monitors.

on_message_in(tp: faust.types.tuples.TP, offset: int, message: faust.types.tuples.Message) → None[source]

Message received by a consumer.

Return type

None

on_stream_event_in(tp: faust.types.tuples.TP, offset: int, stream: faust.types.streams.StreamT, event: faust.types.events.EventT) → Optional[Dict][source]

Message sent to a stream as an event.

Return type

Optional[Dict[~KT, ~VT]]

on_stream_event_out(tp: faust.types.tuples.TP, offset: int, stream: faust.types.streams.StreamT, event: faust.types.events.EventT, state: Dict = None) → None[source]

Event was acknowledged by stream.

Notes

Acknowledged means a stream finished processing the event, but given that multiple streams may be handling the same event, the message cannot be committed before all streams have processed it. When all streams have acknowledged the event, it will go through on_message_out() just before offsets are committed.

Return type

None

on_message_out(tp: faust.types.tuples.TP, offset: int, message: faust.types.tuples.Message) → None[source]

All streams finished processing message.

Return type

None

on_topic_buffer_full(topic: faust.types.topics.TopicT) → None[source]

Topic buffer full so conductor had to wait.

Return type

None

on_table_get(table: faust.types.tables.CollectionT, key: Any) → None[source]

Key retrieved from table.

Return type

None

on_table_set(table: faust.types.tables.CollectionT, key: Any, value: Any) → None[source]

Value set for key in table.

Return type

None

on_table_del(table: faust.types.tables.CollectionT, key: Any) → None[source]

Key deleted from table.

Return type

None

on_commit_initiated(consumer: faust.types.transports.ConsumerT) → Any[source]

Consumer is about to commit topic offset.

Return type

Any

on_commit_completed(consumer: faust.types.transports.ConsumerT, state: Any) → None[source]

Consumer finished committing topic offset.

Return type

None

on_send_initiated(producer: faust.types.transports.ProducerT, topic: str, message: faust.types.tuples.PendingMessage, keysize: int, valsize: int) → Any[source]

About to send a message.

Return type

Any

on_send_completed(producer: faust.types.transports.ProducerT, state: Any, metadata: faust.types.tuples.RecordMetadata) → None[source]

Message successfully sent.

Return type

None

on_send_error(producer: faust.types.transports.ProducerT, exc: BaseException, state: Any) → None[source]

Error while sending message.

Return type

None

on_assignment_start(assignor: faust.types.assignor.PartitionAssignorT) → Dict[source]

Partition assignor is starting to assign partitions.

Return type

Dict[~KT, ~VT]

on_assignment_error(assignor: faust.types.assignor.PartitionAssignorT, state: Dict, exc: BaseException) → None[source]

Partition assignor did not complete assignor due to error.

Return type

None

on_assignment_completed(assignor: faust.types.assignor.PartitionAssignorT, state: Dict) → None[source]

Partition assignor completed assignment.

Return type

None

on_rebalance_start(app: faust.types.app.AppT) → Dict[source]

Cluster rebalance in progress.

Return type

Dict[~KT, ~VT]

on_rebalance_return(app: faust.types.app.AppT, state: Dict) → None[source]

Consumer replied assignment is done to broker.

Return type

None

on_rebalance_end(app: faust.types.app.AppT, state: Dict) → None[source]

Cluster rebalance fully completed (including recovery).

Return type

None

asdict() → Mapping[source]

Convert sensor state to dictionary.

Return type

Mapping[~KT, +VT_co]

logger = <Logger faust.sensors.base (WARNING)>
class faust.sensors.SensorDelegate(app: faust.types.app.AppT) → None[source]

A class that delegates sensor methods to a list of sensors.

add(sensor: faust.types.sensors.SensorT) → None[source]

Add sensor.

Return type

None

remove(sensor: faust.types.sensors.SensorT) → None[source]

Remove sensor.

Return type

None

on_message_in(tp: faust.types.tuples.TP, offset: int, message: faust.types.tuples.Message) → None[source]

Call before message is delegated to streams.

Return type

None

on_stream_event_in(tp: faust.types.tuples.TP, offset: int, stream: faust.types.streams.StreamT, event: faust.types.events.EventT) → Optional[Dict][source]

Call when stream starts processing an event.

Return type

Optional[Dict[~KT, ~VT]]

on_stream_event_out(tp: faust.types.tuples.TP, offset: int, stream: faust.types.streams.StreamT, event: faust.types.events.EventT, state: Dict = None) → None[source]

Call when stream is done processing an event.

Return type

None

on_topic_buffer_full(topic: faust.types.topics.TopicT) → None[source]

Call when conductor topic buffer is full and has to wait.

Return type

None

on_message_out(tp: faust.types.tuples.TP, offset: int, message: faust.types.tuples.Message) → None[source]

Call when message is fully acknowledged and can be committed.

Return type

None

on_table_get(table: faust.types.tables.CollectionT, key: Any) → None[source]

Call when value in table is retrieved.

Return type

None

on_table_set(table: faust.types.tables.CollectionT, key: Any, value: Any) → None[source]

Call when new value for key in table is set.

Return type

None

on_table_del(table: faust.types.tables.CollectionT, key: Any) → None[source]

Call when key in a table is deleted.

Return type

None

on_commit_initiated(consumer: faust.types.transports.ConsumerT) → Any[source]

Call when consumer commit offset operation starts.

Return type

Any

on_commit_completed(consumer: faust.types.transports.ConsumerT, state: Any) → None[source]

Call when consumer commit offset operation completed.

Return type

None

on_send_initiated(producer: faust.types.transports.ProducerT, topic: str, message: faust.types.tuples.PendingMessage, keysize: int, valsize: int) → Any[source]

Call when message added to producer buffer.

Return type

Any

on_send_completed(producer: faust.types.transports.ProducerT, state: Any, metadata: faust.types.tuples.RecordMetadata) → None[source]

Call when producer finished sending message.

Return type

None

on_send_error(producer: faust.types.transports.ProducerT, exc: BaseException, state: Any) → None[source]

Call when producer was unable to publish message.

Return type

None

on_assignment_start(assignor: faust.types.assignor.PartitionAssignorT) → Dict[source]

Partition assignor is starting to assign partitions.

Return type

Dict[~KT, ~VT]

on_assignment_error(assignor: faust.types.assignor.PartitionAssignorT, state: Dict, exc: BaseException) → None[source]

Partition assignor did not complete assignor due to error.

Return type

None

on_assignment_completed(assignor: faust.types.assignor.PartitionAssignorT, state: Dict) → None[source]

Partition assignor completed assignment.

Return type

None

on_rebalance_start(app: faust.types.app.AppT) → Dict[source]

Cluster rebalance in progress.

Return type

Dict[~KT, ~VT]

on_rebalance_return(app: faust.types.app.AppT, state: Dict) → None[source]

Consumer replied assignment is done to broker.

Return type

None

on_rebalance_end(app: faust.types.app.AppT, state: Dict) → None[source]

Cluster rebalance fully completed (including recovery).

Return type

None

class faust.sensors.TableState(table: faust.types.tables.CollectionT, *, keys_retrieved: int = 0, keys_updated: int = 0, keys_deleted: int = 0) → None[source]

Represents the current state of a table.

table = None
keys_retrieved = 0

Number of times a key has been retrieved from this table.

keys_updated = 0

Number of times a key has been created/changed in this table.

keys_deleted = 0

Number of times a key has been deleted from this table.

asdict() → Mapping[source]

Return table state as dictionary.

Return type

Mapping[~KT, +VT_co]

faust.sensors.base

Base-interface for sensors.

class faust.sensors.base.Sensor(*, beacon: mode.utils.types.trees.NodeT = None, loop: asyncio.events.AbstractEventLoop = None) → None[source]

Base class for sensors.

This sensor does not do anything at all, but can be subclassed to create new monitors.

on_message_in(tp: faust.types.tuples.TP, offset: int, message: faust.types.tuples.Message) → None[source]

Message received by a consumer.

Return type

None

on_stream_event_in(tp: faust.types.tuples.TP, offset: int, stream: faust.types.streams.StreamT, event: faust.types.events.EventT) → Optional[Dict][source]

Message sent to a stream as an event.

Return type

Optional[Dict[~KT, ~VT]]

on_stream_event_out(tp: faust.types.tuples.TP, offset: int, stream: faust.types.streams.StreamT, event: faust.types.events.EventT, state: Dict = None) → None[source]

Event was acknowledged by stream.

Notes

Acknowledged means a stream finished processing the event, but given that multiple streams may be handling the same event, the message cannot be committed before all streams have processed it. When all streams have acknowledged the event, it will go through on_message_out() just before offsets are committed.

Return type

None

on_message_out(tp: faust.types.tuples.TP, offset: int, message: faust.types.tuples.Message) → None[source]

All streams finished processing message.

Return type

None

on_topic_buffer_full(topic: faust.types.topics.TopicT) → None[source]

Topic buffer full so conductor had to wait.

Return type

None

on_table_get(table: faust.types.tables.CollectionT, key: Any) → None[source]

Key retrieved from table.

Return type

None

on_table_set(table: faust.types.tables.CollectionT, key: Any, value: Any) → None[source]

Value set for key in table.

Return type

None

on_table_del(table: faust.types.tables.CollectionT, key: Any) → None[source]

Key deleted from table.

Return type

None

on_commit_initiated(consumer: faust.types.transports.ConsumerT) → Any[source]

Consumer is about to commit topic offset.

Return type

Any

on_commit_completed(consumer: faust.types.transports.ConsumerT, state: Any) → None[source]

Consumer finished committing topic offset.

Return type

None

on_send_initiated(producer: faust.types.transports.ProducerT, topic: str, message: faust.types.tuples.PendingMessage, keysize: int, valsize: int) → Any[source]

About to send a message.

Return type

Any

on_send_completed(producer: faust.types.transports.ProducerT, state: Any, metadata: faust.types.tuples.RecordMetadata) → None[source]

Message successfully sent.

Return type

None

on_send_error(producer: faust.types.transports.ProducerT, exc: BaseException, state: Any) → None[source]

Error while sending message.

Return type

None

on_assignment_start(assignor: faust.types.assignor.PartitionAssignorT) → Dict[source]

Partition assignor is starting to assign partitions.

Return type

Dict[~KT, ~VT]

on_assignment_error(assignor: faust.types.assignor.PartitionAssignorT, state: Dict, exc: BaseException) → None[source]

Partition assignor did not complete assignor due to error.

Return type

None

on_assignment_completed(assignor: faust.types.assignor.PartitionAssignorT, state: Dict) → None[source]

Partition assignor completed assignment.

Return type

None

on_rebalance_start(app: faust.types.app.AppT) → Dict[source]

Cluster rebalance in progress.

Return type

Dict[~KT, ~VT]

on_rebalance_return(app: faust.types.app.AppT, state: Dict) → None[source]

Consumer replied assignment is done to broker.

Return type

None

on_rebalance_end(app: faust.types.app.AppT, state: Dict) → None[source]

Cluster rebalance fully completed (including recovery).

Return type

None

asdict() → Mapping[source]

Convert sensor state to dictionary.

Return type

Mapping[~KT, +VT_co]

logger = <Logger faust.sensors.base (WARNING)>
class faust.sensors.base.SensorDelegate(app: faust.types.app.AppT) → None[source]

A class that delegates sensor methods to a list of sensors.

add(sensor: faust.types.sensors.SensorT) → None[source]

Add sensor.

Return type

None

remove(sensor: faust.types.sensors.SensorT) → None[source]

Remove sensor.

Return type

None

on_message_in(tp: faust.types.tuples.TP, offset: int, message: faust.types.tuples.Message) → None[source]

Call before message is delegated to streams.

Return type

None

on_stream_event_in(tp: faust.types.tuples.TP, offset: int, stream: faust.types.streams.StreamT, event: faust.types.events.EventT) → Optional[Dict][source]

Call when stream starts processing an event.

Return type

Optional[Dict[~KT, ~VT]]

on_stream_event_out(tp: faust.types.tuples.TP, offset: int, stream: faust.types.streams.StreamT, event: faust.types.events.EventT, state: Dict = None) → None[source]

Call when stream is done processing an event.

Return type

None

on_topic_buffer_full(topic: faust.types.topics.TopicT) → None[source]

Call when conductor topic buffer is full and has to wait.

Return type

None

on_message_out(tp: faust.types.tuples.TP, offset: int, message: faust.types.tuples.Message) → None[source]

Call when message is fully acknowledged and can be committed.

Return type

None

on_table_get(table: faust.types.tables.CollectionT, key: Any) → None[source]

Call when value in table is retrieved.

Return type

None

on_table_set(table: faust.types.tables.CollectionT, key: Any, value: Any) → None[source]

Call when new value for key in table is set.

Return type

None

on_table_del(table: faust.types.tables.CollectionT, key: Any) → None[source]

Call when key in a table is deleted.

Return type

None

on_commit_initiated(consumer: faust.types.transports.ConsumerT) → Any[source]

Call when consumer commit offset operation starts.

Return type

Any

on_commit_completed(consumer: faust.types.transports.ConsumerT, state: Any) → None[source]

Call when consumer commit offset operation completed.

Return type

None

on_send_initiated(producer: faust.types.transports.ProducerT, topic: str, message: faust.types.tuples.PendingMessage, keysize: int, valsize: int) → Any[source]

Call when message added to producer buffer.

Return type

Any

on_send_completed(producer: faust.types.transports.ProducerT, state: Any, metadata: faust.types.tuples.RecordMetadata) → None[source]

Call when producer finished sending message.

Return type

None

on_send_error(producer: faust.types.transports.ProducerT, exc: BaseException, state: Any) → None[source]

Call when producer was unable to publish message.

Return type

None

on_assignment_start(assignor: faust.types.assignor.PartitionAssignorT) → Dict[source]

Partition assignor is starting to assign partitions.

Return type

Dict[~KT, ~VT]

on_assignment_error(assignor: faust.types.assignor.PartitionAssignorT, state: Dict, exc: BaseException) → None[source]

Partition assignor did not complete assignor due to error.

Return type

None

on_assignment_completed(assignor: faust.types.assignor.PartitionAssignorT, state: Dict) → None[source]

Partition assignor completed assignment.

Return type

None

on_rebalance_start(app: faust.types.app.AppT) → Dict[source]

Cluster rebalance in progress.

Return type

Dict[~KT, ~VT]

on_rebalance_return(app: faust.types.app.AppT, state: Dict) → None[source]

Consumer replied assignment is done to broker.

Return type

None

on_rebalance_end(app: faust.types.app.AppT, state: Dict) → None[source]

Cluster rebalance fully completed (including recovery).

Return type

None

faust.sensors.datadog

Monitor using datadog.

class faust.sensors.datadog.DatadogMonitor(host: str = 'localhost', port: int = 8125, prefix: str = 'faust-app', rate: float = 1.0, **kwargs) → None[source]

Datadog Faust Sensor.

This sensor, records statistics to datadog agents along with computing metrics for the stats server

on_message_in(tp: faust.types.tuples.TP, offset: int, message: faust.types.tuples.Message) → None[source]

Call before message is delegated to streams.

Return type

None

on_stream_event_in(tp: faust.types.tuples.TP, offset: int, stream: faust.types.streams.StreamT, event: faust.types.events.EventT) → Optional[Dict][source]

Call when stream starts processing an event.

Return type

Optional[Dict[~KT, ~VT]]

on_stream_event_out(tp: faust.types.tuples.TP, offset: int, stream: faust.types.streams.StreamT, event: faust.types.events.EventT, state: Dict = None) → None[source]

Call when stream is done processing an event.

Return type

None

on_message_out(tp: faust.types.tuples.TP, offset: int, message: faust.types.tuples.Message) → None[source]

Call when message is fully acknowledged and can be committed.

Return type

None

on_table_get(table: faust.types.tables.CollectionT, key: Any) → None[source]

Call when value in table is retrieved.

Return type

None

on_table_set(table: faust.types.tables.CollectionT, key: Any, value: Any) → None[source]

Call when new value for key in table is set.

Return type

None

on_table_del(table: faust.types.tables.CollectionT, key: Any) → None[source]

Call when key in a table is deleted.

Return type

None

on_commit_completed(consumer: faust.types.transports.ConsumerT, state: Any) → None[source]

Call when consumer commit offset operation completed.

Return type

None

on_send_initiated(producer: faust.types.transports.ProducerT, topic: str, message: faust.types.tuples.PendingMessage, keysize: int, valsize: int) → Any[source]

Call when message added to producer buffer.

Return type

Any

on_send_completed(producer: faust.types.transports.ProducerT, state: Any, metadata: faust.types.tuples.RecordMetadata) → None[source]

Call when producer finished sending message.

Return type

None

on_send_error(producer: faust.types.transports.ProducerT, exc: BaseException, state: Any) → None[source]

Call when producer was unable to publish message.

Return type

None

on_assignment_error(assignor: faust.types.assignor.PartitionAssignorT, state: Dict, exc: BaseException) → None[source]

Partition assignor did not complete assignor due to error.

Return type

None

on_assignment_completed(assignor: faust.types.assignor.PartitionAssignorT, state: Dict) → None[source]

Partition assignor completed assignment.

Return type

None

on_rebalance_start(app: faust.types.app.AppT) → Dict[source]

Cluster rebalance in progress.

Return type

Dict[~KT, ~VT]

on_rebalance_return(app: faust.types.app.AppT, state: Dict) → None[source]

Consumer replied assignment is done to broker.

Return type

None

on_rebalance_end(app: faust.types.app.AppT, state: Dict) → None[source]

Cluster rebalance fully completed (including recovery).

Return type

None

count(metric_name: str, count: int = 1) → None[source]

Count metric by name.

Return type

None

on_tp_commit(tp_offsets: MutableMapping[faust.types.tuples.TP, int]) → None[source]

Call when offset in topic partition is committed.

Return type

None

track_tp_end_offset(tp: faust.types.tuples.TP, offset: int) → None[source]

Track new topic partition end offset for monitoring lags.

Return type

None

logger = <Logger faust.sensors.datadog (WARNING)>
client[source]

Return the datadog client.

faust.sensors.monitor

Monitor - sensor tracking metrics.

class faust.sensors.monitor.TableState(table: faust.types.tables.CollectionT, *, keys_retrieved: int = 0, keys_updated: int = 0, keys_deleted: int = 0) → None[source]

Represents the current state of a table.

table = None
keys_retrieved = 0

Number of times a key has been retrieved from this table.

keys_updated = 0

Number of times a key has been created/changed in this table.

keys_deleted = 0

Number of times a key has been deleted from this table.

asdict() → Mapping[source]

Return table state as dictionary.

Return type

Mapping[~KT, +VT_co]

class faust.sensors.monitor.Monitor(*, max_avg_history: int = None, max_commit_latency_history: int = None, max_send_latency_history: int = None, max_assignment_latency_history: int = None, messages_sent: int = 0, tables: MutableMapping[str, faust.sensors.monitor.TableState] = None, messages_active: int = 0, events_active: int = 0, messages_received_total: int = 0, messages_received_by_topic: Counter[str] = None, events_total: int = 0, events_by_stream: Counter[faust.types.streams.StreamT] = None, events_by_task: Counter[_asyncio.Task] = None, events_runtime: Deque[float] = None, commit_latency: Deque[float] = None, send_latency: Deque[float] = None, assignment_latency: Deque[float] = None, events_s: int = 0, messages_s: int = 0, events_runtime_avg: float = 0.0, topic_buffer_full: Counter[faust.types.topics.TopicT] = None, rebalances: int = None, rebalance_return_latency: Deque[float] = None, rebalance_end_latency: Deque[float] = None, rebalance_return_avg: float = 0.0, rebalance_end_avg: float = 0.0, time: Callable[float] = <built-in function monotonic>, **kwargs) → None[source]

Default Faust Sensor.

This is the default sensor, recording statistics about events, etc.

send_errors = 0

Number of produce operations that ended in error.

assignments_completed = 0

Number of partition assignments completed.

assignments_failed = 0

Number of partitions assignments that failed.

max_avg_history = 100

Max number of total run time values to keep to build average.

max_commit_latency_history = 30

Max number of commit latency numbers to keep.

max_send_latency_history = 30

Max number of send latency numbers to keep.

max_assignment_latency_history = 30

Max number of assignment latency numbers to keep.

rebalances = 0

Number of rebalances seen by this worker.

tables = None

Mapping of tables

commit_latency = None

Deque of commit latency values

send_latency = None

Deque of send latency values

assignment_latency = None

Deque of assignment latency values.

rebalance_return_latency = None

Deque of previous n rebalance return latencies.

rebalance_end_latency = None

Deque of previous n rebalance end latencies.

rebalance_return_avg = 0.0

Average rebalance return latency.

rebalance_end_avg = 0.0

Average rebalance end latency.

messages_active = 0

Number of messages currently being processed.

messages_received_total = 0

Number of messages processed in total.

messages_received_by_topic = None

Count of messages received by topic

messages_sent = 0

Number of messages sent in total.

messages_sent_by_topic = None

Number of messages sent by topic.

messages_s = 0

Number of messages being processed this second.

events_active = 0

Number of events currently being processed.

events_total = 0

Number of events processed in total.

events_by_task = None

Count of events processed by task

events_by_stream = None

Count of events processed by stream

events_s = 0

Number of events being processed this second.

events_runtime_avg = 0.0

Average event runtime over the last second.

events_runtime = None

Deque of run times used for averages

topic_buffer_full = None

Counter of times a topics buffer was full

metric_counts = None

Arbitrary counts added by apps

tp_committed_offsets = None

Last committed offsets by TopicPartition

tp_read_offsets = None

Last read offsets by TopicPartition

tp_end_offsets = None

Log end offsets by TopicPartition

secs_since(start_time: float) → float[source]

Given timestamp start, return number of seconds since that time.

Return type

float

ms_since(start_time: float) → float[source]

Given timestamp start, return number of ms since that time.

Return type

float

logger = <Logger faust.sensors.monitor (WARNING)>
secs_to_ms(timestamp: float) → float[source]

Convert seconds to milliseconds.

Return type

float

asdict() → Mapping[source]

Return monitor state as dictionary.

Return type

Mapping[~KT, +VT_co]

on_message_in(tp: faust.types.tuples.TP, offset: int, message: faust.types.tuples.Message) → None[source]

Call before message is delegated to streams.

Return type

None

on_stream_event_in(tp: faust.types.tuples.TP, offset: int, stream: faust.types.streams.StreamT, event: faust.types.events.EventT) → Optional[Dict][source]

Call when stream starts processing an event.

Return type

Optional[Dict[~KT, ~VT]]

on_stream_event_out(tp: faust.types.tuples.TP, offset: int, stream: faust.types.streams.StreamT, event: faust.types.events.EventT, state: Dict = None) → None[source]

Call when stream is done processing an event.

Return type

None

on_topic_buffer_full(topic: faust.types.topics.TopicT) → None[source]

Call when conductor topic buffer is full and has to wait.

Return type

None

on_message_out(tp: faust.types.tuples.TP, offset: int, message: faust.types.tuples.Message) → None[source]

Call when message is fully acknowledged and can be committed.

Return type

None

on_table_get(table: faust.types.tables.CollectionT, key: Any) → None[source]

Call when value in table is retrieved.

Return type

None

on_table_set(table: faust.types.tables.CollectionT, key: Any, value: Any) → None[source]

Call when new value for key in table is set.

Return type

None

on_table_del(table: faust.types.tables.CollectionT, key: Any) → None[source]

Call when key in a table is deleted.

Return type

None

on_commit_initiated(consumer: faust.types.transports.ConsumerT) → Any[source]

Consumer is about to commit topic offset.

Return type

Any

on_commit_completed(consumer: faust.types.transports.ConsumerT, state: Any) → None[source]

Call when consumer commit offset operation completed.

Return type

None

on_send_initiated(producer: faust.types.transports.ProducerT, topic: str, message: faust.types.tuples.PendingMessage, keysize: int, valsize: int) → Any[source]

Call when message added to producer buffer.

Return type

Any

on_send_completed(producer: faust.types.transports.ProducerT, state: Any, metadata: faust.types.tuples.RecordMetadata) → None[source]

Call when producer finished sending message.

Return type

None

on_send_error(producer: faust.types.transports.ProducerT, exc: BaseException, state: Any) → None[source]

Call when producer was unable to publish message.

Return type

None

count(metric_name: str, count: int = 1) → None[source]

Count metric by name.

Return type

None

on_tp_commit(tp_offsets: MutableMapping[faust.types.tuples.TP, int]) → None[source]

Call when offset in topic partition is committed.

Return type

None

track_tp_end_offset(tp: faust.types.tuples.TP, offset: int) → None[source]

Track new topic partition end offset for monitoring lags.

Return type

None

on_assignment_start(assignor: faust.types.assignor.PartitionAssignorT) → Dict[source]

Partition assignor is starting to assign partitions.

Return type

Dict[~KT, ~VT]

on_assignment_error(assignor: faust.types.assignor.PartitionAssignorT, state: Dict, exc: BaseException) → None[source]

Partition assignor did not complete assignor due to error.

Return type

None

on_assignment_completed(assignor: faust.types.assignor.PartitionAssignorT, state: Dict) → None[source]

Partition assignor completed assignment.

Return type

None

on_rebalance_start(app: faust.types.app.AppT) → Dict[source]

Cluster rebalance in progress.

Return type

Dict[~KT, ~VT]

on_rebalance_return(app: faust.types.app.AppT, state: Dict) → None[source]

Consumer replied assignment is done to broker.

Return type

None

on_rebalance_end(app: faust.types.app.AppT, state: Dict) → None[source]

Cluster rebalance fully completed (including recovery).

Return type

None

faust.sensors.statsd

Monitor using Statsd.

class faust.sensors.statsd.StatsdMonitor(host: str = 'localhost', port: int = 8125, prefix: str = 'faust-app', rate: float = 1.0, **kwargs) → None[source]

Statsd Faust Sensor.

This sensor, records statistics to Statsd along with computing metrics for the stats server

on_message_in(tp: faust.types.tuples.TP, offset: int, message: faust.types.tuples.Message) → None[source]

Call before message is delegated to streams.

Return type

None

on_stream_event_in(tp: faust.types.tuples.TP, offset: int, stream: faust.types.streams.StreamT, event: faust.types.events.EventT) → Optional[Dict][source]

Call when stream starts processing an event.

Return type

Optional[Dict[~KT, ~VT]]

on_stream_event_out(tp: faust.types.tuples.TP, offset: int, stream: faust.types.streams.StreamT, event: faust.types.events.EventT, state: Dict = None) → None[source]

Call when stream is done processing an event.

Return type

None

on_message_out(tp: faust.types.tuples.TP, offset: int, message: faust.types.tuples.Message) → None[source]

Call when message is fully acknowledged and can be committed.

Return type

None

on_table_get(table: faust.types.tables.CollectionT, key: Any) → None[source]

Call when value in table is retrieved.

Return type

None

on_table_set(table: faust.types.tables.CollectionT, key: Any, value: Any) → None[source]

Call when new value for key in table is set.

Return type

None

on_table_del(table: faust.types.tables.CollectionT, key: Any) → None[source]

Call when key in a table is deleted.

Return type

None

on_commit_completed(consumer: faust.types.transports.ConsumerT, state: Any) → None[source]

Call when consumer commit offset operation completed.

Return type

None

on_send_initiated(producer: faust.types.transports.ProducerT, topic: str, message: faust.types.tuples.PendingMessage, keysize: int, valsize: int) → Any[source]

Call when message added to producer buffer.

Return type

Any

on_send_completed(producer: faust.types.transports.ProducerT, state: Any, metadata: faust.types.tuples.RecordMetadata) → None[source]

Call when producer finished sending message.

Return type

None

on_send_error(producer: faust.types.transports.ProducerT, exc: BaseException, state: Any) → None[source]

Call when producer was unable to publish message.

Return type

None

on_assignment_error(assignor: faust.types.assignor.PartitionAssignorT, state: Dict, exc: BaseException) → None[source]

Partition assignor did not complete assignor due to error.

Return type

None

on_assignment_completed(assignor: faust.types.assignor.PartitionAssignorT, state: Dict) → None[source]

Partition assignor completed assignment.

Return type

None

on_rebalance_start(app: faust.types.app.AppT) → Dict[source]

Cluster rebalance in progress.

Return type

Dict[~KT, ~VT]

on_rebalance_return(app: faust.types.app.AppT, state: Dict) → None[source]

Consumer replied assignment is done to broker.

Return type

None

on_rebalance_end(app: faust.types.app.AppT, state: Dict) → None[source]

Cluster rebalance fully completed (including recovery).

Return type

None

count(metric_name: str, count: int = 1) → None[source]

Count metric by name.

Return type

None

on_tp_commit(tp_offsets: MutableMapping[faust.types.tuples.TP, int]) → None[source]

Call when offset in topic partition is committed.

Return type

None

logger = <Logger faust.sensors.statsd (WARNING)>
track_tp_end_offset(tp: faust.types.tuples.TP, offset: int) → None[source]

Track new topic partition end offset for monitoring lags.

Return type

None

client[source]

Return statsd client.

Serializers

faust.serializers.codecs

Serialization utilities.

Supported codecs
  • raw - No encoding/serialization (bytes only).

  • json - json with UTF-8 encoding.

  • pickle - pickle with base64 encoding (not urlsafe).

  • binary - base64 encoding (not urlsafe).

Serialization by name

The dumps() function takes a codec name and the object to encode, then returns bytes:

>>> s = dumps('json', obj)

For the reverse direction, the loads() function takes a codec name and bytes to decode:

>>> obj = loads('json', s)

You can also combine encoders in the name, like in this case where json is combined with gzip compression:

>>> obj = loads('json|gzip', s)
Codec registry

Codecs are configured by name and this module maintains a mapping from name to Codec instance: the codecs attribute.

You can add a new codec to this mapping by:

>>> from faust.serializers import codecs
>>> codecs.register(custom, custom_serializer())

A codec subclass requires two methods to be implemented: _loads() and _dumps():

import msgpack

from faust.serializers import codecs

class raw_msgpack(codecs.Codec):

    def _dumps(self, obj: Any) -> bytes:
        return msgpack.dumps(obj)

    def _loads(self, s: bytes) -> Any:
        return msgpack.loads(s)

Our codec now encodes/decodes to raw msgpack format, but we may also need to transfer this payload over a transport easily confused by binary data, such as JSON where everything is Unicode.

You can chain codecs together, so to add a binary text encoding like Base64, to your codec, we use the | operator to form a combined codec:

def msgpack() -> codecs.Codec:
    return raw_msgpack() | codecs.binary()

codecs.register('msgpack', msgpack())

At this point we monkey-patched Faust to support our codec, and we can use it to define records like this:

>>> from faust.serializers import Record
>>> class Point(Record, serializer='msgpack'):
...     x: int
...     y: int

The problem with monkey-patching is that we must make sure the patching happens before we use the feature.

Faust also supports registering codec extensions using setuptools entry points, so instead we can create an installable msgpack extension.

To do so we need to define a package with the following directory layout:

faust-msgpack/
    setup.py
    faust_msgpack.py

The first file, faust-msgpack/setup.py, defines metadata about our package and should look like the following example:

from setuptools import setup, find_packages

setup(
    name='faust-msgpack',
    version='1.0.0',
    description='Faust msgpack serialization support',
    author='Ola A. Normann',
    author_email='ola@normann.no',
    url='http://github.com/example/faust-msgpack',
    platforms=['any'],
    license='BSD',
    packages=find_packages(exclude=['ez_setup', 'tests', 'tests.*']),
    zip_safe=False,
    install_requires=['msgpack-python'],
    tests_require=[],
    entry_points={
        'faust.codecs': [
            'msgpack = faust_msgpack:msgpack',
        ],
    },
)

The most important part being the entry_points key which tells Faust how to load our plugin. We have set the name of our codec to msgpack and the path to the codec class to be faust_msgpack:msgpack. This will be imported by Faust as from faust_msgpack import msgpack, so we need to define that part next in our faust-msgpack/faust_msgpack.py module:

from faust.serializers import codecs

class raw_msgpack(codecs.Codec):

    def _dumps(self, obj: Any) -> bytes:
        return msgpack.dumps(s)


def msgpack() -> codecs.Codec:
    return raw_msgpack() | codecs.binary()

That’s it! To install and use our new extension we do:

$ python setup.py install

At this point may want to publish this on PyPI to share the extension with other Faust users.

class faust.serializers.codecs.Codec(children: Tuple[faust.types.codecs.CodecT, ...] = None, **kwargs) → None[source]

Base class for codecs.

children = None

next steps in the recursive codec chain. x = pickle | binary returns codec with children set to (pickle, binary).

nodes = None

cached version of children including this codec as the first node. could use chain below, but seems premature so just copying the list.

kwargs = None

subclasses can support keyword arguments, the base implementation of clone() uses this to preserve keyword arguments in copies.

dumps(obj: Any) → bytes[source]

Encode object obj.

Return type

bytes

loads(s: bytes) → Any[source]

Decode object from string.

Return type

Any

clone(*children) → faust.types.codecs.CodecT[source]

Create a clone of this codec, with optional children added.

Return type

CodecT

faust.serializers.codecs.register(name: str, codec: faust.types.codecs.CodecT) → None[source]

Register new codec in the codec registry.

Return type

None

faust.serializers.codecs.get_codec(name_or_codec: Union[faust.types.codecs.CodecT, str, None]) → faust.types.codecs.CodecT[source]

Get codec by name.

Return type

CodecT

faust.serializers.codecs.dumps(codec: Union[faust.types.codecs.CodecT, str, None], obj: Any) → bytes[source]

Encode object into bytes.

Return type

bytes

faust.serializers.codecs.loads(codec: Union[faust.types.codecs.CodecT, str, None], s: bytes) → Any[source]

Decode object from bytes.

Return type

Any

faust.serializers.registry

Registry of supported codecs (serializers, compressors, etc.).

class faust.serializers.registry.Registry(key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = 'json') → None[source]

Serializing message keys/values.

Parameters
  • key_serializer (Union[CodecT, str, None]) – Default key serializer to use when none provided.

  • value_serializer (Union[CodecT, str, None]) – Default value serializer to use when none provided.

loads_key(typ: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str], None], key: Optional[bytes], *, serializer: Union[faust.types.codecs.CodecT, str, None] = None) → Union[bytes, faust.types.core._ModelT, Any, None][source]

Deserialize message key.

Parameters
Return type

Union[bytes, _ModelT, Any, None]

loads_value(typ: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str], None], value: Optional[bytes], *, serializer: Union[faust.types.codecs.CodecT, str, None] = None) → Any[source]

Deserialize value.

Parameters
Return type

Any

dumps_key(typ: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str], None], key: Union[bytes, faust.types.core._ModelT, Any, None], *, serializer: Union[faust.types.codecs.CodecT, str, None] = None, skip: Tuple[Type, ...] = (<class 'bytes'>,)) → Optional[bytes][source]

Serialize key.

Parameters
  • typ (Union[Type[ModelT], Type[bytes], Type[str], None]) – Model hint (can also be str/bytes). When typ=str or bytes, raw serializer is assumed.

  • key (Union[bytes, _ModelT, Any, None]) – The key value to serializer.

  • serializer (Union[CodecT, str, None]) – Codec to use for this key, if it is not a model type. If not set the default will be used (key_serializer).

Return type

Optional[bytes]

dumps_value(typ: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str], None], value: Union[bytes, faust.types.core._ModelT, Any], *, serializer: Union[faust.types.codecs.CodecT, str, None] = None, skip: Tuple[Type, ...] = (<class 'bytes'>,)) → Optional[bytes][source]

Serialize value.

Parameters
  • typ (Union[Type[ModelT], Type[bytes], Type[str], None]) – Model hint (can also be str/bytes). When typ=str or bytes, raw serializer is assumed.

  • key – The value to serializer.

  • serializer (Union[CodecT, str, None]) – Codec to use for this value, if it is not a model type. If not set the default will be used (value_serializer).

Return type

Optional[bytes]

Model[source]

Return the faust.Model class used by this serializer.

Stores

faust.stores

Storage registry.

faust.stores.by_name(name: Union[_T, str]) → _T
Return type

~_T

faust.stores.by_url(url: Union[str, yarl.URL]) → _T

Get class associated with URL (scheme is used as alias key).

Return type

~_T

faust.stores.base

Base class for table storage drivers.

class faust.stores.base.Store(url: Union[str, yarl.URL], app: faust.types.app.AppT, table: faust.types.tables.CollectionT, *, table_name: str = '', key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, options: Mapping[str, Any] = None, **kwargs) → None[source]

Base class for table storage drivers.

persisted_offset(tp: faust.types.tuples.TP) → Optional[int][source]

Return the persisted offset for this topic and partition.

Return type

Optional[int]

set_persisted_offset(tp: faust.types.tuples.TP, offset: int) → None[source]

Set the persisted offset for this topic and partition.

Return type

None

property label

Return short description of this store. :rtype: str

logger = <Logger faust.stores.base (WARNING)>
class faust.stores.base.SerializedStore(url: Union[str, yarl.URL], app: faust.types.app.AppT, table: faust.types.tables.CollectionT, *, table_name: str = '', key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, options: Mapping[str, Any] = None, **kwargs) → None[source]

Base class for table storage drivers requiring serialization.

apply_changelog_batch(batch: Iterable[faust.types.events.EventT], to_key: Callable[Any, KT], to_value: Callable[Any, VT]) → None[source]

Apply batch of events from changelog topic to this store.

Return type

None

keys() → collections.abc.KeysView[source]

Return view of keys in the K/V store.

Return type

KeysView

values() → collections.abc.ValuesView[source]

Return view of values in the K/V store.

Return type

ValuesView

items() → collections.abc.ItemsView[source]

Return view of items in the K/V store as (key, value) pairs.

Return type

ItemsView

clear() → None[source]

Clear all data from this K/V store.

Return type

None

logger = <Logger faust.stores.base (WARNING)>
faust.stores.memory

In-memory table storage.

class faust.stores.memory.Store(url: Union[str, yarl.URL], app: faust.types.app.AppT, table: faust.types.tables.CollectionT, *, table_name: str = '', key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, options: Mapping[str, Any] = None, **kwargs) → None[source]

Table storage using an in-memory dictionary.

apply_changelog_batch(batch: Iterable[faust.types.events.EventT], to_key: Callable[Any, Any], to_value: Callable[Any, Any]) → None[source]

Apply batch of changelog events to in-memory table.

Return type

None

persisted_offset(tp: faust.types.tuples.TP) → Optional[int][source]

Return the persisted offset.

This always returns None when using the in-memory store.

Return type

Optional[int]

reset_state() → None[source]

Remove local file system state.

This does nothing when using the in-memory store.

Return type

None

logger = <Logger faust.stores.memory (WARNING)>
faust.stores.rocksdb

RocksDB storage.

class faust.stores.rocksdb.DB[source]

Dummy DB.

class faust.stores.rocksdb.Options[source]

Dummy Options.

class faust.stores.rocksdb.PartitionDB(*args, **kwargs)[source]

Tuple of (partition, rocksdb.DB).

property partition

Alias for field number 0

property db

Alias for field number 1

class faust.stores.rocksdb.RocksDBOptions(max_open_files: int = None, write_buffer_size: int = None, max_write_buffer_number: int = None, target_file_size_base: int = None, block_cache_size: int = None, block_cache_compressed_size: int = None, bloom_filter_size: int = None, **kwargs) → None[source]

Options required to open a RocksDB database.

max_open_files = 943719
write_buffer_size = 67108864
max_write_buffer_number = 3
target_file_size_base = 67108864
block_cache_size = 2147483648
block_cache_compressed_size = 524288000
bloom_filter_size = 3
open(path: pathlib.Path, *, read_only: bool = False) → faust.stores.rocksdb.DB[source]

Open RocksDB database using this configuration.

Return type

DB

as_options() → faust.stores.rocksdb.Options[source]

Return rocksdb.Options object using this configuration.

Return type

Options

class faust.stores.rocksdb.Store(url: Union[str, yarl.URL], app: faust.types.app.AppT, table: faust.types.tables.CollectionT, *, key_index_size: int = None, options: Mapping[str, Any] = None, **kwargs) → None[source]

RocksDB table storage.

offset_key = b'__faust\x00offset__'
rocksdb_options = None

Used to configure the RocksDB settings for table stores.

key_index_size = None

Decides the size of the K=>TopicPartition index (10_000).

persisted_offset(tp: faust.types.tuples.TP) → Optional[int][source]

Return the last persisted offset.

See set_persisted_offset().

Return type

Optional[int]

set_persisted_offset(tp: faust.types.tuples.TP, offset: int) → None[source]

Set the last persisted offset for this table.

This will remember the last offset that we wrote to RocksDB, so that on rebalance/recovery we can seek past this point to only read the events that occurred recently while we were not an active replica.

Return type

None

apply_changelog_batch(batch: Iterable[faust.types.events.EventT], to_key: Callable[Any, Any], to_value: Callable[Any, Any]) → None[source]

Write batch of changelog events to local RocksDB storage.

Parameters
  • batch (Iterable[EventT[]]) – Iterable of changelog events (faust.Event)

  • to_key (Callable[[Any], Any]) – A callable you can use to deserialize the key of a changelog event.

  • to_value (Callable[[Any], Any]) – A callable you can use to deserialize the value of a changelog event.

Return type

None

revoke_partitions(table: faust.types.tables.CollectionT, tps: Set[faust.types.tuples.TP]) → None[source]

De-assign partitions used on this worker instance.

Parameters
  • table (CollectionT[]) – The table that we store data for.

  • tps (Set[TP]) – Set of topic partitions that we should no longer be serving data for.

Return type

None

logger = <Logger faust.stores.rocksdb (WARNING)>
reset_state() → None[source]

Remove all data stored in this table.

Notes

Only local data will be removed, table changelog partitions in Kafka will not be affected.

Return type

None

partition_path(partition: int) → pathlib.Path[source]

Return pathlib.Path to db file of specific partition.

Return type

Path

property path

Path to directory where tables are stored.

See also

tabledir (default value for this path).

Return type

Path

Returns

pathlib.Path.

property basename

Return the name of this table, used as filename prefix. :rtype: Path

Tables

faust.tables

Tables: Distributed object K/V-store.

class faust.tables.Collection(app: faust.types.app.AppT, *, name: str = None, default: Callable[Any] = None, store: Union[str, yarl.URL] = None, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, partitions: int = None, window: faust.types.windows.WindowT = None, changelog_topic: faust.types.topics.TopicT = None, help: str = None, on_recover: Callable[Awaitable[None]] = None, on_changelog_event: Callable[faust.types.events.EventT, Awaitable[None]] = None, recovery_buffer_size: int = 1000, standby_buffer_size: int = None, extra_topic_configs: Mapping[str, Any] = None, recover_callbacks: Set[Callable[Awaitable[None]]] = None, options: Mapping[str, Any] = None, **kwargs) → None[source]

Base class for changelog-backed data structures stored in Kafka.

property data

Underlying table storage.

on_recover(fun: Callable[Awaitable[None]]) → Callable[Awaitable[None]][source]

Add function as callback to be called on table recovery.

Return type

Callable[[], Awaitable[None]]

info() → Mapping[str, Any][source]

Return table attributes as dictionary.

Return type

Mapping[str, Any]

persisted_offset(tp: faust.types.tuples.TP) → Optional[int][source]

Return the last persisted offset for topic partition.

Return type

Optional[int]

reset_state() → None[source]

Reset local state.

Return type

None

join(*fields) → faust.types.streams.StreamT[source]

Right join of this table and another stream/table.

Return type

StreamT[+T_co]

left_join(*fields) → faust.types.streams.StreamT[source]

Left join of this table and another stream/table.

Return type

StreamT[+T_co]

inner_join(*fields) → faust.types.streams.StreamT[source]

Inner join of this table and another stream/table.

Return type

StreamT[+T_co]

outer_join(*fields) → faust.types.streams.StreamT[source]

Outer join of this table and another stream/table.

Return type

StreamT[+T_co]

clone(**kwargs) → Any[source]

Clone table instance.

Return type

Any

combine(*nodes, **kwargs) → faust.types.streams.StreamT[source]

Combine tables and streams.

Return type

StreamT[+T_co]

contribute_to_stream(active: faust.types.streams.StreamT) → None[source]

Contribute table to stream join.

Return type

None

property label

Return human-readable label used to represent this table. :rtype: str

property shortlabel

Return short label used to represent this table in logs. :rtype: str

logger = <Logger faust.tables.base (WARNING)>
property changelog_topic

Return the changelog topic used by this table. :rtype: TopicT[]

apply_changelog_batch(batch: Iterable[faust.types.events.EventT]) → None[source]

Apply batch of events from changelog topic local table storage.

Return type

None

class faust.tables.CollectionT(app: faust.types.tables._AppT, *, name: str = None, default: Callable[Any] = None, store: Union[str, yarl.URL] = None, key_type: faust.types.tables._ModelArg = None, value_type: faust.types.tables._ModelArg = None, partitions: int = None, window: faust.types.windows.WindowT = None, changelog_topic: faust.types.topics.TopicT = None, help: str = None, on_recover: Callable[Awaitable[None]] = None, on_changelog_event: Callable[faust.types.events.EventT, Awaitable[None]] = None, recovery_buffer_size: int = 1000, standby_buffer_size: int = None, extra_topic_configs: Mapping[str, Any] = None, options: Mapping[str, Any] = None, **kwargs) → None[source]
abstract property changelog_topic
Return type

TopicT[]

abstract apply_changelog_batch(batch: Iterable[faust.types.events.EventT]) → None[source]
Return type

None

abstract persisted_offset(tp: faust.types.tuples.TP) → Optional[int][source]
Return type

Optional[int]

abstract reset_state() → None[source]
Return type

None

abstract on_recover(fun: Callable[Awaitable[None]]) → Callable[Awaitable[None]][source]
Return type

Callable[[], Awaitable[None]]

class faust.tables.TableManager(app: faust.types.app.AppT, **kwargs) → None[source]

Manage tables used by Faust worker.

persist_offset_on_commit(store: faust.types.stores.StoreT, tp: faust.types.tuples.TP, offset: int) → None[source]

Mark the persisted offset for a TP to be saved on commit.

This is used for “exactly_once” processing guarantee. Instead of writing the persisted offset to RocksDB when the message is sent, we write it to disk when the offset is committed.

Return type

None

on_commit(offsets: MutableMapping[faust.types.tuples.TP, int]) → None[source]

Call when committing source topic partitions.

Return type

None

on_commit_tp(tp: faust.types.tuples.TP) → None[source]

Call when committing source topic partition used by this table.

Return type

None

on_rebalance_start() → None[source]

Call when a new rebalancing operation starts.

Return type

None

on_actives_ready() → None[source]

Call when actives are fully up-to-date.

Return type

None

on_standbys_ready() → None[source]

Call when standbys are fully up-to-date and ready for failover.

Return type

None

property changelog_topics

Return the set of known changelog topics. :rtype: Set[str]

property changelog_queue

Queue used to buffer changelog events. :rtype: ThrowableQueue

property recovery

Recovery service used by this table manager. :rtype: Recovery[]

add(table: faust.types.tables.CollectionT) → faust.types.tables.CollectionT[source]

Add table to be managed by this table manager.

Return type

CollectionT[]

logger = <Logger faust.tables.manager (WARNING)>
on_partitions_revoked(revoked: Set[faust.types.tuples.TP]) → None[source]

Call when cluster is rebalancing and partitions revoked.

Return type

None

class faust.tables.TableManagerT(app: faust.types.tables._AppT, **kwargs) → None[source]
abstract add(table: faust.types.tables.CollectionT) → faust.types.tables.CollectionT[source]
Return type

CollectionT[]

abstract persist_offset_on_commit(store: faust.types.stores.StoreT, tp: faust.types.tuples.TP, offset: int) → None[source]
Return type

None

abstract on_commit(offsets: MutableMapping[faust.types.tuples.TP, int]) → None[source]
Return type

None

abstract property changelog_topics
Return type

Set[str]

class faust.tables.Table(app: faust.types.app.AppT, *, name: str = None, default: Callable[Any] = None, store: Union[str, yarl.URL] = None, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, partitions: int = None, window: faust.types.windows.WindowT = None, changelog_topic: faust.types.topics.TopicT = None, help: str = None, on_recover: Callable[Awaitable[None]] = None, on_changelog_event: Callable[faust.types.events.EventT, Awaitable[None]] = None, recovery_buffer_size: int = 1000, standby_buffer_size: int = None, extra_topic_configs: Mapping[str, Any] = None, recover_callbacks: Set[Callable[Awaitable[None]]] = None, options: Mapping[str, Any] = None, **kwargs) → None[source]

Table (non-windowed).

class WindowWrapper(table: faust.types.tables.TableT, *, relative_to: Union[faust.types.tables._FieldDescriptorT, Callable[Optional[faust.types.events.EventT], Union[float, datetime.datetime]], datetime.datetime, float, None] = None, key_index: bool = False, key_index_table: faust.types.tables.TableT = None) → None

Windowed table wrapper.

A windowed table does not return concrete values when keys are accessed, instead WindowSet is returned so that the values can be further reduced to the wanted time period.

ValueType

alias of WindowSet

as_ansitable(title: str = '{table.name}', **kwargs) → str

Draw table as a terminal ANSI table.

Return type

str

clone(relative_to: Union[faust.types.tables._FieldDescriptorT, Callable[Optional[faust.types.events.EventT], Union[float, datetime.datetime]], datetime.datetime, float, None]) → faust.types.tables.WindowWrapperT

Clone this table using a new time-relativity configuration.

Return type

WindowWrapperT[]

property get_relative_timestamp

Return the current handler for extracting event timestamp. :rtype: Optional[Callable[[Optional[EventT[]]], Union[float, datetime]]]

get_timestamp(event: faust.types.events.EventT = None) → float

Get timestamp from event.

Return type

float

items(event: faust.types.events.EventT = None) → ItemsView

Return table items view: iterate over (key, value) pairs.

Return type

ItemsView[~KT, +VT_co]

key_index = False
key_index_table = None
keys() → KeysView

Return table keys view: iterate over keys found in this table.

Return type

KeysView[~KT]

property name

Return the name of this table. :rtype: str

on_del_key(key: Any) → None

Call when a key is deleted from this table.

Return type

None

on_recover(fun: Callable[Awaitable[None]]) → Callable[Awaitable[None]]

Call after table recovery.

Return type

Callable[[], Awaitable[None]]

on_set_key(key: Any, value: Any) → None

Call when the value for a key in this table is set.

Return type

None

relative_to(ts: Union[faust.types.tables._FieldDescriptorT, Callable[Optional[faust.types.events.EventT], Union[float, datetime.datetime]], datetime.datetime, float, None]) → faust.types.tables.WindowWrapperT

Configure the time-relativity of this windowed table.

Return type

WindowWrapperT[]

relative_to_field(field: faust.types.models.FieldDescriptorT) → faust.types.tables.WindowWrapperT

Configure table to be time-relative to a field in the stream.

This means the window will use the timestamp from the event currently being processed in the stream.

Further it will not use the timestamp of the Kafka message, but a field in the value of the event.

For example a model field:

class Account(faust.Record):
    created: float

table = app.Table('foo').hopping(
    ...,
).relative_to_field(Account.created)
Return type

WindowWrapperT[]

relative_to_now() → faust.types.tables.WindowWrapperT

Configure table to be time-relative to the system clock.

Return type

WindowWrapperT[]

relative_to_stream() → faust.types.tables.WindowWrapperT

Configure table to be time-relative to the stream.

This means the window will use the timestamp from the event currently being processed in the stream.

Return type

WindowWrapperT[]

values(event: faust.types.events.EventT = None) → ValuesView

Return table values view: iterate over values in this table.

Return type

ValuesView[+VT_co]

using_window(window: faust.types.windows.WindowT, *, key_index: bool = False) → faust.types.tables.WindowWrapperT[source]

Wrap table using a specific window type.

Return type

WindowWrapperT[]

hopping(size: Union[datetime.timedelta, float, str], step: Union[datetime.timedelta, float, str], expires: Union[datetime.timedelta, float, str] = None, key_index: bool = False) → faust.types.tables.WindowWrapperT[source]

Wrap table in a hopping window.

Return type

WindowWrapperT[]

tumbling(size: Union[datetime.timedelta, float, str], expires: Union[datetime.timedelta, float, str] = None, key_index: bool = False) → faust.types.tables.WindowWrapperT[source]

Wrap table in a tumbling window.

Return type

WindowWrapperT[]

on_key_get(key: KT) → None[source]

Call when the value for a key in this table is retrieved.

Return type

None

on_key_set(key: KT, value: VT) → None[source]

Call when the value for a key in this table is set.

Return type

None

on_key_del(key: KT) → None[source]

Call when a key in this table is removed.

Return type

None

as_ansitable(title: str = '{table.name}', **kwargs) → str[source]

Draw table as a a terminal ANSI table.

Return type

str

logger = <Logger faust.tables.table (WARNING)>
class faust.tables.TableT(app: faust.types.tables._AppT, *, name: str = None, default: Callable[Any] = None, store: Union[str, yarl.URL] = None, key_type: faust.types.tables._ModelArg = None, value_type: faust.types.tables._ModelArg = None, partitions: int = None, window: faust.types.windows.WindowT = None, changelog_topic: faust.types.topics.TopicT = None, help: str = None, on_recover: Callable[Awaitable[None]] = None, on_changelog_event: Callable[faust.types.events.EventT, Awaitable[None]] = None, recovery_buffer_size: int = 1000, standby_buffer_size: int = None, extra_topic_configs: Mapping[str, Any] = None, options: Mapping[str, Any] = None, **kwargs) → None[source]
abstract using_window(window: faust.types.windows.WindowT, *, key_index: bool = False) → faust.types.tables.WindowWrapperT[source]
Return type

WindowWrapperT[]

abstract hopping(size: Union[datetime.timedelta, float, str], step: Union[datetime.timedelta, float, str], expires: Union[datetime.timedelta, float, str] = None, key_index: bool = False) → faust.types.tables.WindowWrapperT[source]
Return type

WindowWrapperT[]

abstract tumbling(size: Union[datetime.timedelta, float, str], expires: Union[datetime.timedelta, float, str] = None, key_index: bool = False) → faust.types.tables.WindowWrapperT[source]
Return type

WindowWrapperT[]

abstract as_ansitable(**kwargs) → str[source]
Return type

str

faust.tables.base

Base class Collection for Table and future data structures.

class faust.tables.base.Collection(app: faust.types.app.AppT, *, name: str = None, default: Callable[Any] = None, store: Union[str, yarl.URL] = None, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, partitions: int = None, window: faust.types.windows.WindowT = None, changelog_topic: faust.types.topics.TopicT = None, help: str = None, on_recover: Callable[Awaitable[None]] = None, on_changelog_event: Callable[faust.types.events.EventT, Awaitable[None]] = None, recovery_buffer_size: int = 1000, standby_buffer_size: int = None, extra_topic_configs: Mapping[str, Any] = None, recover_callbacks: Set[Callable[Awaitable[None]]] = None, options: Mapping[str, Any] = None, **kwargs) → None[source]

Base class for changelog-backed data structures stored in Kafka.

property data

Underlying table storage.

on_recover(fun: Callable[Awaitable[None]]) → Callable[Awaitable[None]][source]

Add function as callback to be called on table recovery.

Return type

Callable[[], Awaitable[None]]

info() → Mapping[str, Any][source]

Return table attributes as dictionary.

Return type

Mapping[str, Any]

persisted_offset(tp: faust.types.tuples.TP) → Optional[int][source]

Return the last persisted offset for topic partition.

Return type

Optional[int]

reset_state() → None[source]

Reset local state.

Return type

None

join(*fields) → faust.types.streams.StreamT[source]

Right join of this table and another stream/table.

Return type

StreamT[+T_co]

left_join(*fields) → faust.types.streams.StreamT[source]

Left join of this table and another stream/table.

Return type

StreamT[+T_co]

inner_join(*fields) → faust.types.streams.StreamT[source]

Inner join of this table and another stream/table.

Return type

StreamT[+T_co]

outer_join(*fields) → faust.types.streams.StreamT[source]

Outer join of this table and another stream/table.

Return type

StreamT[+T_co]

clone(**kwargs) → Any[source]

Clone table instance.

Return type

Any

combine(*nodes, **kwargs) → faust.types.streams.StreamT[source]

Combine tables and streams.

Return type

StreamT[+T_co]

contribute_to_stream(active: faust.types.streams.StreamT) → None[source]

Contribute table to stream join.

Return type

None

property label

Return human-readable label used to represent this table. :rtype: str

property shortlabel

Return short label used to represent this table in logs. :rtype: str

logger = <Logger faust.tables.base (WARNING)>
property changelog_topic

Return the changelog topic used by this table. :rtype: TopicT[]

apply_changelog_batch(batch: Iterable[faust.types.events.EventT]) → None[source]

Apply batch of events from changelog topic local table storage.

Return type

None

faust.tables.manager

Tables (changelog stream).

class faust.tables.manager.TableManager(app: faust.types.app.AppT, **kwargs) → None[source]

Manage tables used by Faust worker.

persist_offset_on_commit(store: faust.types.stores.StoreT, tp: faust.types.tuples.TP, offset: int) → None[source]

Mark the persisted offset for a TP to be saved on commit.

This is used for “exactly_once” processing guarantee. Instead of writing the persisted offset to RocksDB when the message is sent, we write it to disk when the offset is committed.

Return type

None

on_commit(offsets: MutableMapping[faust.types.tuples.TP, int]) → None[source]

Call when committing source topic partitions.

Return type

None

on_commit_tp(tp: faust.types.tuples.TP) → None[source]

Call when committing source topic partition used by this table.

Return type

None

on_rebalance_start() → None[source]

Call when a new rebalancing operation starts.

Return type

None

on_actives_ready() → None[source]

Call when actives are fully up-to-date.

Return type

None

on_standbys_ready() → None[source]

Call when standbys are fully up-to-date and ready for failover.

Return type

None

property changelog_topics

Return the set of known changelog topics. :rtype: Set[str]

property changelog_queue

Queue used to buffer changelog events. :rtype: ThrowableQueue

property recovery

Recovery service used by this table manager. :rtype: Recovery[]

add(table: faust.types.tables.CollectionT) → faust.types.tables.CollectionT[source]

Add table to be managed by this table manager.

Return type

CollectionT[]

logger = <Logger faust.tables.manager (WARNING)>
on_partitions_revoked(revoked: Set[faust.types.tuples.TP]) → None[source]

Call when cluster is rebalancing and partitions revoked.

Return type

None

faust.tables.objects

Storing objects in tables.

This is also used to store data structures such as sets/lists.

class faust.tables.objects.ChangeloggedObject(manager: faust.tables.objects.ChangeloggedObjectManager, key: Any) → None[source]

A changelogged object in a ChangeloggedObjectManager store.

abstract sync_from_storage(value: Any) → None[source]

Sync value from storage.

Return type

None

abstract as_stored_value() → Any[source]

Return value as represented in storage.

Return type

Any

abstract apply_changelog_event(operation: int, value: Any) → None[source]

Apply event in changelog topic to local table state.

Return type

None

class faust.tables.objects.ChangeloggedObjectManager(table: faust.tables.table.Table, **kwargs) → None[source]

Store of changelogged objects.

send_changelog_event(key: Any, operation: int, value: Any) → None[source]

Send changelog event to the tables changelog topic.

Return type

None

persisted_offset(tp: faust.types.tuples.TP) → Optional[int][source]

Get the last persisted offset for changelog topic partition.

Return type

Optional[int]

set_persisted_offset(tp: faust.types.tuples.TP, offset: int) → None[source]

Set the last persisted offset for changelog topic partition.

Return type

None

sync_from_storage() → None[source]

Sync set contents from storage.

Return type

None

flush_to_storage() → None[source]

Flush set contents to storage.

Return type

None

logger = <Logger faust.tables.objects (WARNING)>
reset_state() → None[source]

Reset table local state.

Return type

None

property storage

Return underlying storage used by this set table. :rtype: StoreT[~KT, ~VT]

apply_changelog_batch(batch: Iterable[faust.types.events.EventT], to_key: Callable[Any, Any], to_value: Callable[Any, Any]) → None[source]

Apply batch of changelog events to local state.

Return type

None

faust.tables.recovery

Table recovery after rebalancing.

exception faust.tables.recovery.ServiceStopped[source]

The recovery service was stopped.

exception faust.tables.recovery.RebalanceAgain[source]

During rebalance, another rebalance happened.

class faust.tables.recovery.Recovery(app: faust.types.app.AppT, tables: faust.types.tables.TableManagerT, **kwargs) → None[source]

Service responsible for recovering tables from changelog topics.

stats_interval = 5.0
highwaters = None

Mapping of highwaters by topic partition.

in_recovery = False
standbys_pending = False
standby_tps = None

Set of standby topic partitions.

active_tps = None

Set of active topic partitions.

tp_to_table = None

Mapping from topic partition to table

active_offsets = None

Active offset by topic partition.

standby_offsets = None

Standby offset by topic partition.

active_highwaters = None

Active highwaters by topic partition.

standby_highwaters = None

Standby highwaters by topic partition.

buffers = None

Changelog event buffers by table. These are filled by background task _slurp_changelog, and need to be flushed before starting new recovery/stopping.

buffer_sizes = None

Cache of buffer size by topic partition..

property signal_recovery_start

Event used to signal that recovery has started. :rtype: Event

property signal_recovery_end

Event used to signal that recovery has ended. :rtype: Event

property signal_recovery_reset

Event used to signal that recovery is restarting. :rtype: Event

add_active(table: faust.types.tables.CollectionT, tp: faust.types.tuples.TP) → None[source]

Add changelog partition to be used for active recovery.

Return type

None

add_standby(table: faust.types.tables.CollectionT, tp: faust.types.tuples.TP) → None[source]

Add changelog partition to be used for standby recovery.

Return type

None

revoke(tp: faust.types.tuples.TP) → None[source]

Revoke assignment of table changelog partition.

Return type

None

on_partitions_revoked(revoked: Set[faust.types.tuples.TP]) → None[source]

Call when rebalancing and partitions are revoked.

Return type

None

logger = <Logger faust.tables.recovery (WARNING)>
flush_buffers() → None[source]

Flush changelog buffers.

Return type

None

need_recovery() → bool[source]

Return True if recovery is required.

Return type

bool

active_remaining() → Counter[faust.types.tuples.TP][source]

Return counter of remaining changes by active partition.

Return type

Counter[TP]

standby_remaining() → Counter[faust.types.tuples.TP][source]

Return counter of remaining changes by standby partition.

Return type

Counter[TP]

active_remaining_total() → int[source]

Return number of changes remaining for actives to be up-to-date.

Return type

int

standby_remaining_total() → int[source]

Return number of changes remaining for standbys to be up-to-date.

Return type

int

active_stats() → MutableMapping[faust.types.tuples.TP, Tuple[int, int, int]][source]

Return current active recovery statistics.

Return type

MutableMapping[TP, Tuple[int, int, int]]

standby_stats() → MutableMapping[faust.types.tuples.TP, Tuple[int, int, int]][source]

Return current standby recovery statistics.

Return type

MutableMapping[TP, Tuple[int, int, int]]

faust.tables.sets

Storing sets in tables.

class faust.tables.sets.SetTable(app: faust.types.app.AppT, *, start_manager: bool = False, manager_topic_name: str = None, manager_topic_suffix: str = None, **kwargs) → None[source]

Table that maintains a dictionary of sets.

Manager

alias of SetTableManager

WindowWrapper

alias of SetWindowWrapper

logger = <Logger faust.tables.sets (WARNING)>
manager_topic_suffix = '-setmanager'
faust.tables.table

Table (key/value changelog stream).

class faust.tables.table.Table(app: faust.types.app.AppT, *, name: str = None, default: Callable[Any] = None, store: Union[str, yarl.URL] = None, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, partitions: int = None, window: faust.types.windows.WindowT = None, changelog_topic: faust.types.topics.TopicT = None, help: str = None, on_recover: Callable[Awaitable[None]] = None, on_changelog_event: Callable[faust.types.events.EventT, Awaitable[None]] = None, recovery_buffer_size: int = 1000, standby_buffer_size: int = None, extra_topic_configs: Mapping[str, Any] = None, recover_callbacks: Set[Callable[Awaitable[None]]] = None, options: Mapping[str, Any] = None, **kwargs) → None[source]

Table (non-windowed).

class WindowWrapper(table: faust.types.tables.TableT, *, relative_to: Union[faust.types.tables._FieldDescriptorT, Callable[Optional[faust.types.events.EventT], Union[float, datetime.datetime]], datetime.datetime, float, None] = None, key_index: bool = False, key_index_table: faust.types.tables.TableT = None) → None

Windowed table wrapper.

A windowed table does not return concrete values when keys are accessed, instead WindowSet is returned so that the values can be further reduced to the wanted time period.

ValueType

alias of WindowSet

as_ansitable(title: str = '{table.name}', **kwargs) → str

Draw table as a terminal ANSI table.

Return type

str

clone(relative_to: Union[faust.types.tables._FieldDescriptorT, Callable[Optional[faust.types.events.EventT], Union[float, datetime.datetime]], datetime.datetime, float, None]) → faust.types.tables.WindowWrapperT

Clone this table using a new time-relativity configuration.

Return type

WindowWrapperT[]

property get_relative_timestamp

Return the current handler for extracting event timestamp. :rtype: Optional[Callable[[Optional[EventT[]]], Union[float, datetime]]]

get_timestamp(event: faust.types.events.EventT = None) → float

Get timestamp from event.

Return type

float

items(event: faust.types.events.EventT = None) → ItemsView

Return table items view: iterate over (key, value) pairs.

Return type

ItemsView[~KT, +VT_co]

key_index = False
key_index_table = None
keys() → KeysView

Return table keys view: iterate over keys found in this table.

Return type

KeysView[~KT]

property name

Return the name of this table. :rtype: str

on_del_key(key: Any) → None

Call when a key is deleted from this table.

Return type

None

on_recover(fun: Callable[Awaitable[None]]) → Callable[Awaitable[None]]

Call after table recovery.

Return type

Callable[[], Awaitable[None]]

on_set_key(key: Any, value: Any) → None

Call when the value for a key in this table is set.

Return type

None

relative_to(ts: Union[faust.types.tables._FieldDescriptorT, Callable[Optional[faust.types.events.EventT], Union[float, datetime.datetime]], datetime.datetime, float, None]) → faust.types.tables.WindowWrapperT

Configure the time-relativity of this windowed table.

Return type

WindowWrapperT[]

relative_to_field(field: faust.types.models.FieldDescriptorT) → faust.types.tables.WindowWrapperT

Configure table to be time-relative to a field in the stream.

This means the window will use the timestamp from the event currently being processed in the stream.

Further it will not use the timestamp of the Kafka message, but a field in the value of the event.

For example a model field:

class Account(faust.Record):
    created: float

table = app.Table('foo').hopping(
    ...,
).relative_to_field(Account.created)
Return type

WindowWrapperT[]

relative_to_now() → faust.types.tables.WindowWrapperT

Configure table to be time-relative to the system clock.

Return type

WindowWrapperT[]

relative_to_stream() → faust.types.tables.WindowWrapperT

Configure table to be time-relative to the stream.

This means the window will use the timestamp from the event currently being processed in the stream.

Return type

WindowWrapperT[]

values(event: faust.types.events.EventT = None) → ValuesView

Return table values view: iterate over values in this table.

Return type

ValuesView[+VT_co]

using_window(window: faust.types.windows.WindowT, *, key_index: bool = False) → faust.types.tables.WindowWrapperT[source]

Wrap table using a specific window type.

Return type

WindowWrapperT[]

hopping(size: Union[datetime.timedelta, float, str], step: Union[datetime.timedelta, float, str], expires: Union[datetime.timedelta, float, str] = None, key_index: bool = False) → faust.types.tables.WindowWrapperT[source]

Wrap table in a hopping window.

Return type

WindowWrapperT[]

tumbling(size: Union[datetime.timedelta, float, str], expires: Union[datetime.timedelta, float, str] = None, key_index: bool = False) → faust.types.tables.WindowWrapperT[source]

Wrap table in a tumbling window.

Return type

WindowWrapperT[]

on_key_get(key: KT) → None[source]

Call when the value for a key in this table is retrieved.

Return type

None

on_key_set(key: KT, value: VT) → None[source]

Call when the value for a key in this table is set.

Return type

None

on_key_del(key: KT) → None[source]

Call when a key in this table is removed.

Return type

None

as_ansitable(title: str = '{table.name}', **kwargs) → str[source]

Draw table as a a terminal ANSI table.

Return type

str

logger = <Logger faust.tables.table (WARNING)>
faust.tables.wrappers

Wrappers for windowed tables.

class faust.tables.wrappers.WindowedKeysView(mapping: faust.types.tables.WindowWrapperT, event: faust.types.events.EventT = None)[source]

The object returned by windowed_table.keys().

now() → Iterator[Any][source]

Return all keys present in window closest to system time.

Return type

Iterator[Any]

current(event: faust.types.events.EventT = None) → Iterator[Any][source]

Return all keys present in window closest to stream time.

Return type

Iterator[Any]

delta(d: Union[datetime.timedelta, float, str], event: faust.types.events.EventT = None) → Iterator[Any][source]

Return all keys present in window ±n seconds ago.

Return type

Iterator[Any]

class faust.tables.wrappers.WindowedItemsView(mapping: faust.types.tables.WindowWrapperT, event: faust.types.events.EventT = None)[source]

The object returned by windowed_table.items().

now() → Iterator[Tuple[Any, Any]][source]

Return all items present in window closest to system time.

Return type

Iterator[Tuple[Any, Any]]

current(event: faust.types.events.EventT = None) → Iterator[Tuple[Any, Any]][source]

Return all items present in window closest to stream time.

Return type

Iterator[Tuple[Any, Any]]

delta(d: Union[datetime.timedelta, float, str], event: faust.types.events.EventT = None) → Iterator[Tuple[Any, Any]][source]

Return all items present in window ±n seconds ago.

Return type

Iterator[Tuple[Any, Any]]

class faust.tables.wrappers.WindowedValuesView(mapping: faust.types.tables.WindowWrapperT, event: faust.types.events.EventT = None)[source]

The object returned by windowed_table.values().

now() → Iterator[Any][source]

Return all values present in window closest to system time.

Return type

Iterator[Any]

current(event: faust.types.events.EventT = None) → Iterator[Any][source]

Return all values present in window closest to stream time.

Return type

Iterator[Any]

delta(d: Union[datetime.timedelta, float, str], event: faust.types.events.EventT = None) → Iterator[Any][source]

Return all values present in window ±n seconds ago.

Return type

Iterator[Any]

class faust.tables.wrappers.WindowSet(key: KT, table: faust.types.tables.TableT, wrapper: faust.types.tables.WindowWrapperT, event: faust.types.events.EventT = None) → None[source]

Represents the windows available for table key.

Table[k] returns WindowSet since k can exist in multiple windows, and to retrieve an actual item we need a timestamp.

The timestamp of the current event (if this is executing in a stream processor), can be used by accessing .current():

Table[k].current()

similarly the most recent value can be accessed using .now():

Table[k].now()

from delta of the time of the current event:

Table[k].delta(timedelta(hours=3))

or delta from time of other event:

Table[k].delta(timedelta(hours=3), other_event)
apply(op: Callable[[VT, VT], VT], value: VT, event: faust.types.events.EventT = None) → faust.types.tables.WindowSetT[KT, VT][source]

Apply operation to all affected windows.

Return type

WindowSetT[~KT, ~VT]

value(event: faust.types.events.EventT = None) → VT[source]

Return current value.

The selected window depends on the current time-relativity setting used (relative_to_now(), relative_to_stream(), relative_to_field(), etc.)

Return type

~VT

now() → VT[source]

Return current value, using the current system time.

Return type

~VT

current(event: faust.types.events.EventT = None) → VT[source]

Return current value, using stream time-relativity.

Return type

~VT

delta(d: Union[datetime.timedelta, float, str], event: faust.types.events.EventT = None) → VT[source]

Return value as it was ±n seconds ago.

Return type

~VT

class faust.tables.wrappers.WindowWrapper(table: faust.types.tables.TableT, *, relative_to: Union[faust.types.tables._FieldDescriptorT, Callable[Optional[faust.types.events.EventT], Union[float, datetime.datetime]], datetime.datetime, float, None] = None, key_index: bool = False, key_index_table: faust.types.tables.TableT = None) → None[source]

Windowed table wrapper.

A windowed table does not return concrete values when keys are accessed, instead WindowSet is returned so that the values can be further reduced to the wanted time period.

ValueType

alias of WindowSet

key_index = False
key_index_table = None
clone(relative_to: Union[faust.types.tables._FieldDescriptorT, Callable[Optional[faust.types.events.EventT], Union[float, datetime.datetime]], datetime.datetime, float, None]) → faust.types.tables.WindowWrapperT[source]

Clone this table using a new time-relativity configuration.

Return type

WindowWrapperT[]

property name

Return the name of this table. :rtype: str

relative_to(ts: Union[faust.types.tables._FieldDescriptorT, Callable[Optional[faust.types.events.EventT], Union[float, datetime.datetime]], datetime.datetime, float, None]) → faust.types.tables.WindowWrapperT[source]

Configure the time-relativity of this windowed table.

Return type

WindowWrapperT[]

relative_to_now() → faust.types.tables.WindowWrapperT[source]

Configure table to be time-relative to the system clock.

Return type

WindowWrapperT[]

relative_to_field(field: faust.types.models.FieldDescriptorT) → faust.types.tables.WindowWrapperT[source]

Configure table to be time-relative to a field in the stream.

This means the window will use the timestamp from the event currently being processed in the stream.

Further it will not use the timestamp of the Kafka message, but a field in the value of the event.

For example a model field:

class Account(faust.Record):
    created: float

table = app.Table('foo').hopping(
    ...,
).relative_to_field(Account.created)
Return type

WindowWrapperT[]

relative_to_stream() → faust.types.tables.WindowWrapperT[source]

Configure table to be time-relative to the stream.

This means the window will use the timestamp from the event currently being processed in the stream.

Return type

WindowWrapperT[]

get_timestamp(event: faust.types.events.EventT = None) → float[source]

Get timestamp from event.

Return type

float

on_recover(fun: Callable[Awaitable[None]]) → Callable[Awaitable[None]][source]

Call after table recovery.

Return type

Callable[[], Awaitable[None]]

on_set_key(key: Any, value: Any) → None[source]

Call when the value for a key in this table is set.

Return type

None

on_del_key(key: Any) → None[source]

Call when a key is deleted from this table.

Return type

None

keys() → KeysView[source]

Return table keys view: iterate over keys found in this table.

Return type

KeysView[~KT]

values(event: faust.types.events.EventT = None) → ValuesView[source]

Return table values view: iterate over values in this table.

Return type

ValuesView[+VT_co]

items(event: faust.types.events.EventT = None) → ItemsView[source]

Return table items view: iterate over (key, value) pairs.

Return type

ItemsView[~KT, +VT_co]

as_ansitable(title: str = '{table.name}', **kwargs) → str[source]

Draw table as a terminal ANSI table.

Return type

str

property get_relative_timestamp

Return the current handler for extracting event timestamp. :rtype: Optional[Callable[[Optional[EventT[]]], Union[float, datetime]]]

Transports

faust.transport

Transports.

faust.transport.by_name(name: Union[_T, str]) → _T
Return type

~_T

faust.transport.by_url(url: Union[str, yarl.URL]) → _T

Get class associated with URL (scheme is used as alias key).

Return type

~_T

faust.transport.base

Base message transport implementation.

The Transport is responsible for:

  • Holds reference to the app that created it.

  • Creates new consumers/producers.

To see a reference transport implementation go to: faust/transport/drivers/aiokafka.py

class faust.transport.base.Transport(url: List[yarl.URL], app: faust.types.app.AppT, loop: asyncio.events.AbstractEventLoop = None) → None[source]

Message transport implementation.

class Consumer(transport: faust.types.transports.TransportT, callback: Callable[faust.types.tuples.Message, Awaitable], on_partitions_revoked: Callable[Set[faust.types.tuples.TP], Awaitable[None]], on_partitions_assigned: Callable[Set[faust.types.tuples.TP], Awaitable[None]], *, commit_interval: float = None, commit_livelock_soft_timeout: float = None, loop: asyncio.events.AbstractEventLoop = None, **kwargs) → None

Base Consumer.

ack(message: faust.types.tuples.Message) → bool

Mark message as being acknowledged by stream.

Return type

bool

close() → None

Close consumer for graceful shutdown.

Return type

None

consumer_stopped_errors = ()
flow_active = True
getmany(timeout: float) → AsyncIterator[Tuple[faust.types.tuples.TP, faust.types.tuples.Message]]

Fetch batch of messages from server.

Return type

AsyncIterator[Tuple[TP, Message]]

logger = <Logger faust.transport.consumer (WARNING)>
on_init_dependencies() → Iterable[mode.types.services.ServiceT]

Return list of services this consumer depends on.

Return type

Iterable[ServiceT[]]

pause_partitions(tps: Iterable[faust.types.tuples.TP]) → None

Pause fetching from partitions.

Return type

None

resume_flow() → None

Allow consumer to process messages.

Return type

None

resume_partitions(tps: Iterable[faust.types.tuples.TP]) → None

Resume fetching from partitions.

Return type

None

stop_flow() → None

Block consumer from processing any more messages.

Return type

None

track_message(message: faust.types.tuples.Message) → None

Track message and mark it as pending ack.

Return type

None

property unacked

Return the set of currently unacknowledged messages. :rtype: Set[Message]

class Producer(transport: faust.types.transports.TransportT, loop: asyncio.events.AbstractEventLoop = None, **kwargs) → None

Base Producer.

key_partition(topic: str, key: bytes) → faust.types.tuples.TP

Hash key to determine partition.

Return type

TP

logger = <Logger faust.transport.producer (WARNING)>
send_soon(fut: faust.types.tuples.FutureMessage) → None
Return type

None

supports_headers() → bool

Return True if headers are supported by this transport.

Return type

bool

class TransactionManager(transport: faust.types.transports.TransportT, *, consumer: faust.types.transports.ConsumerT, producer: faust.types.transports.ProducerT, **kwargs) → None

Manage producer transactions.

key_partition(topic: str, key: bytes) → faust.types.tuples.TP
Return type

TP

logger = <Logger faust.transport.consumer (WARNING)>
supports_headers() → bool

Return True if the Kafka server supports headers.

Return type

bool

transactional_id_format = '{group_id}-{tpg.group}-{tpg.partition}'
class Conductor(app: faust.types.app.AppT, **kwargs) → None

Manages the channels that subscribe to topics.

  • Consumes messages from topic using a single consumer.

  • Forwards messages to all channels subscribing to a topic.

acks_enabled_for(topic: str) → bool

Return True if acks are enabled for topic by name.

Return type

bool

add(topic: Any) → None

Register topic to be subscribed.

Return type

None

clear() → None

Clear all subscriptions.

Return type

None

discard(topic: Any) → None

Unregister topic from conductor.

Return type

None

property label

Return label for use in logs. :rtype: str

logger = <Logger faust.transport.conductor (WARNING)>
property shortlabel

Return short label for use in logs. :rtype: str

class Fetcher(app: faust.types.app.AppT, **kwargs) → None

Service fetching messages from Kafka.

logger = <Logger faust.transport.consumer (WARNING)>
create_consumer(callback: Callable[faust.types.tuples.Message, Awaitable], **kwargs) → faust.types.transports.ConsumerT[source]

Create new consumer.

Return type

ConsumerT[]

create_producer(**kwargs) → faust.types.transports.ProducerT[source]

Create new producer.

Return type

ProducerT[]

create_transaction_manager(consumer: faust.types.transports.ConsumerT, producer: faust.types.transports.ProducerT, **kwargs) → faust.types.transports.TransactionManagerT[source]

Create new transaction manager.

Return type

TransactionManagerT[]

create_conductor(**kwargs) → faust.types.transports.ConductorT[source]

Create new consumer conductor.

Return type

ConductorT[]

class faust.transport.base.Conductor(app: faust.types.app.AppT, **kwargs) → None[source]

Manages the channels that subscribe to topics.

  • Consumes messages from topic using a single consumer.

  • Forwards messages to all channels subscribing to a topic.

logger = <Logger faust.transport.conductor (WARNING)>
acks_enabled_for(topic: str) → bool[source]

Return True if acks are enabled for topic by name.

Return type

bool

clear() → None[source]

Clear all subscriptions.

Return type

None

add(topic: Any) → None[source]

Register topic to be subscribed.

Return type

None

discard(topic: Any) → None[source]

Unregister topic from conductor.

Return type

None

property label

Return label for use in logs. :rtype: str

property shortlabel

Return short label for use in logs. :rtype: str

class faust.transport.base.Consumer(transport: faust.types.transports.TransportT, callback: Callable[faust.types.tuples.Message, Awaitable], on_partitions_revoked: Callable[Set[faust.types.tuples.TP], Awaitable[None]], on_partitions_assigned: Callable[Set[faust.types.tuples.TP], Awaitable[None]], *, commit_interval: float = None, commit_livelock_soft_timeout: float = None, loop: asyncio.events.AbstractEventLoop = None, **kwargs) → None[source]

Base Consumer.

logger = <Logger faust.transport.consumer (WARNING)>
consumer_stopped_errors = ()

Tuple of exception types that may be raised when the underlying consumer driver is stopped.

flow_active = True
on_init_dependencies() → Iterable[mode.types.services.ServiceT][source]

Return list of services this consumer depends on.

Return type

Iterable[ServiceT[]]

stop_flow() → None[source]

Block consumer from processing any more messages.

Return type

None

resume_flow() → None[source]

Allow consumer to process messages.

Return type

None

pause_partitions(tps: Iterable[faust.types.tuples.TP]) → None[source]

Pause fetching from partitions.

Return type

None

resume_partitions(tps: Iterable[faust.types.tuples.TP]) → None[source]

Resume fetching from partitions.

Return type

None

getmany(timeout: float) → AsyncIterator[Tuple[faust.types.tuples.TP, faust.types.tuples.Message]][source]

Fetch batch of messages from server.

Return type

AsyncIterator[Tuple[TP, Message]]

track_message(message: faust.types.tuples.Message) → None[source]

Track message and mark it as pending ack.

Return type

None

ack(message: faust.types.tuples.Message) → bool[source]

Mark message as being acknowledged by stream.

Return type

bool

close() → None[source]

Close consumer for graceful shutdown.

Return type

None

property unacked

Return the set of currently unacknowledged messages. :rtype: Set[Message]

class faust.transport.base.Fetcher(app: faust.types.app.AppT, **kwargs) → None[source]

Service fetching messages from Kafka.

logger = <Logger faust.transport.consumer (WARNING)>
class faust.transport.base.Producer(transport: faust.types.transports.TransportT, loop: asyncio.events.AbstractEventLoop = None, **kwargs) → None[source]

Base Producer.

send_soon(fut: faust.types.tuples.FutureMessage) → None[source]
Return type

None

key_partition(topic: str, key: bytes) → faust.types.tuples.TP[source]

Hash key to determine partition.

Return type

TP

logger = <Logger faust.transport.producer (WARNING)>
supports_headers() → bool[source]

Return True if headers are supported by this transport.

Return type

bool

faust.transport.conductor

The conductor delegates messages from the consumer to the streams.

class faust.transport.conductor.ConductorCompiler[source]

Compile a function to handle the messages for a topic+partition.

build(conductor: faust.transport.conductor.Conductor, tp: faust.types.tuples.TP, channels: MutableSet[faust.transport.conductor._Topic]) → Callable[faust.types.tuples.Message, Awaitable][source]

Generate closure used to deliver messages.

Return type

Callable[[Message], Awaitable[+T_co]]

class faust.transport.conductor.Conductor(app: faust.types.app.AppT, **kwargs) → None[source]

Manages the channels that subscribe to topics.

  • Consumes messages from topic using a single consumer.

  • Forwards messages to all channels subscribing to a topic.

logger = <Logger faust.transport.conductor (WARNING)>
acks_enabled_for(topic: str) → bool[source]

Return True if acks are enabled for topic by name.

Return type

bool

clear() → None[source]

Clear all subscriptions.

Return type

None

add(topic: Any) → None[source]

Register topic to be subscribed.

Return type

None

discard(topic: Any) → None[source]

Unregister topic from conductor.

Return type

None

property label

Return label for use in logs. :rtype: str

property shortlabel

Return short label for use in logs. :rtype: str

faust.transport.consumer

Consumer - fetching messages and managing consumer state.

The Consumer is responsible for:

  • Holds reference to the transport that created it

  • … and the app via self.transport.app.

  • Has a callback that usually points back to Conductor.on_message.

  • Receives messages and calls the callback for every message received.

  • Keeps track of the message and its acked/unacked status.

  • The Conductor forwards the message to all Streams that subscribes to the topic the message was sent to.

    • Messages are reference counted, and the Conductor increases the reference count to the number of subscribed streams.

    • Stream.__aiter__ is set up in a way such that when what is iterating over the stream is finished with the message, a finally: block will decrease the reference count by one.

    • When the reference count for a message hits zero, the stream will call Consumer.ack(message), which will mark that topic + partition + offset combination as “committable”

    • If all the streams share the same key_type/value_type, the conductor will only deserialize the payload once.

  • Commits the offset at an interval

    • The Consumer has a background thread that periodically commits the offset.

    • If the consumer marked an offset as committable this thread will advance the committed offset.

    • To find the offset that it can safely advance to the commit thread will traverse the _acked mapping of TP to list of acked offsets, by finding a range of consecutive acked offsets (see note in _new_offset).

class faust.transport.consumer.Fetcher(app: faust.types.app.AppT, **kwargs) → None[source]

Service fetching messages from Kafka.

logger = <Logger faust.transport.consumer (WARNING)>
class faust.transport.consumer.Consumer(transport: faust.types.transports.TransportT, callback: Callable[faust.types.tuples.Message, Awaitable], on_partitions_revoked: Callable[Set[faust.types.tuples.TP], Awaitable[None]], on_partitions_assigned: Callable[Set[faust.types.tuples.TP], Awaitable[None]], *, commit_interval: float = None, commit_livelock_soft_timeout: float = None, loop: asyncio.events.AbstractEventLoop = None, **kwargs) → None[source]

Base Consumer.

logger = <Logger faust.transport.consumer (WARNING)>
consumer_stopped_errors = ()

Tuple of exception types that may be raised when the underlying consumer driver is stopped.

flow_active = True
on_init_dependencies() → Iterable[mode.types.services.ServiceT][source]

Return list of services this consumer depends on.

Return type

Iterable[ServiceT[]]

stop_flow() → None[source]

Block consumer from processing any more messages.

Return type

None

resume_flow() → None[source]

Allow consumer to process messages.

Return type

None

pause_partitions(tps: Iterable[faust.types.tuples.TP]) → None[source]

Pause fetching from partitions.

Return type

None

resume_partitions(tps: Iterable[faust.types.tuples.TP]) → None[source]

Resume fetching from partitions.

Return type

None

getmany(timeout: float) → AsyncIterator[Tuple[faust.types.tuples.TP, faust.types.tuples.Message]][source]

Fetch batch of messages from server.

Return type

AsyncIterator[Tuple[TP, Message]]

track_message(message: faust.types.tuples.Message) → None[source]

Track message and mark it as pending ack.

Return type

None

ack(message: faust.types.tuples.Message) → bool[source]

Mark message as being acknowledged by stream.

Return type

bool

close() → None[source]

Close consumer for graceful shutdown.

Return type

None

property unacked

Return the set of currently unacknowledged messages. :rtype: Set[Message]

faust.transport.producer

Producer.

The Producer is responsible for:

  • Holds reference to the transport that created it

  • … and the app via self.transport.app.

  • Sending messages.

class faust.transport.producer.Producer(transport: faust.types.transports.TransportT, loop: asyncio.events.AbstractEventLoop = None, **kwargs) → None[source]

Base Producer.

send_soon(fut: faust.types.tuples.FutureMessage) → None[source]
Return type

None

key_partition(topic: str, key: bytes) → faust.types.tuples.TP[source]

Hash key to determine partition.

Return type

TP

logger = <Logger faust.transport.producer (WARNING)>
supports_headers() → bool[source]

Return True if headers are supported by this transport.

Return type

bool

faust.transport.drivers

Transport registry.

faust.transport.drivers.by_name(name: Union[_T, str]) → _T
Return type

~_T

faust.transport.drivers.by_url(url: Union[str, yarl.URL]) → _T

Get class associated with URL (scheme is used as alias key).

Return type

~_T

faust.transport.drivers.aiokafka

Message transport using aiokafka.

class faust.transport.drivers.aiokafka.Consumer(*args, **kwargs) → None[source]

Kafka consumer using aiokafka.

logger = <Logger faust.transport.drivers.aiokafka (WARNING)>
RebalanceListener

alias of ConsumerRebalanceListener

consumer_stopped_errors = (<class 'aiokafka.errors.ConsumerStoppedError'>,)
class faust.transport.drivers.aiokafka.Producer(transport: faust.types.transports.TransportT, loop: asyncio.events.AbstractEventLoop = None, **kwargs) → None[source]

Kafka producer using aiokafka.

logger = <Logger faust.transport.drivers.aiokafka (WARNING)>
allow_headers = True
key_partition(topic: str, key: bytes) → faust.types.tuples.TP[source]

Hash key to determine partition destination.

Return type

TP

supports_headers() → bool[source]

Return True if message headers are supported.

Return type

bool

class faust.transport.drivers.aiokafka.Transport(*args, **kwargs) → None[source]

Kafka transport using aiokafka.

class Consumer(*args, **kwargs) → None

Kafka consumer using aiokafka.

RebalanceListener

alias of ConsumerRebalanceListener

consumer_stopped_errors = (<class 'aiokafka.errors.ConsumerStoppedError'>,)
logger = <Logger faust.transport.drivers.aiokafka (WARNING)>
class Producer(transport: faust.types.transports.TransportT, loop: asyncio.events.AbstractEventLoop = None, **kwargs) → None

Kafka producer using aiokafka.

allow_headers = True
key_partition(topic: str, key: bytes) → faust.types.tuples.TP

Hash key to determine partition destination.

Return type

TP

logger = <Logger faust.transport.drivers.aiokafka (WARNING)>
supports_headers() → bool

Return True if message headers are supported.

Return type

bool

default_port = 9092
driver_version = 'aiokafka=1.0.3'
faust.transport.utils

Transport utils - scheduling.

faust.transport.utils.TopicIndexMap

alias of typing.MutableMapping

class faust.transport.utils.DefaultSchedulingStrategy[source]

Consumer record scheduler.

Delivers records in round robin between both topics and partitions.

classmethod map_from_records(records: Mapping[faust.types.tuples.TP, List]) → MutableMapping[str, faust.transport.utils.TopicBuffer][source]

Convert records to topic index map.

Return type

MutableMapping[str, TopicBuffer[]]

iterate(records: Mapping[faust.types.tuples.TP, List]) → Iterator[Tuple[faust.types.tuples.TP, Any]][source]

Iterate over records in round-robin order.

Return type

Iterator[Tuple[TP, Any]]

records_iterator(index: MutableMapping[str, TopicBuffer]) → Iterator[Tuple[faust.types.tuples.TP, Any]][source]

Iterate over topic index map in round-robin order.

Return type

Iterator[Tuple[TP, Any]]

class faust.transport.utils.TopicBuffer → None[source]

Data structure managing the buffer for incoming records in a topic.

add(tp: faust.types.tuples.TP, buffer: List) → None[source]

Add topic partition buffer to the cycle.

Return type

None

Assignor

faust.assignor.client_assignment

Client Assignment.

class faust.assignor.client_assignment.CopartitionedAssignment(actives: Set[int] = None, standbys: Set[int] = None, topics: Set[str] = None) → None[source]

Copartitioned Assignment.

validate() → None[source]
Return type

None

num_assigned(active: bool) → int[source]
Return type

int

get_unassigned(num_partitions: int, active: bool) → Set[int][source]
Return type

Set[int]

pop_partition(active: bool) → int[source]
Return type

int

unassign_partition(partition: int, active: bool) → None[source]
Return type

None

assign_partition(partition: int, active: bool) → None[source]
Return type

None

unassign_extras(capacity: int, replicas: int) → None[source]
Return type

None

partition_assigned(partition: int, active: bool) → bool[source]
Return type

bool

promote_standby_to_active(standby_partition: int) → None[source]
Return type

None

get_assigned_partitions(active: bool) → Set[int][source]
Return type

Set[int]

can_assign(partition: int, active: bool) → bool[source]
Return type

bool

class faust.assignor.client_assignment.ClientAssignment(actives, standbys, *, __strict__=True, __faust=None, **kwargs) → None[source]

Client Assignment data model.

actives

Describes a field.

Used for every field in Record so that they can be used in join’s /group_by etc.

Examples

>>> class Withdrawal(Record):
...    account_id: str
...    amount: float = 0.0
>>> Withdrawal.account_id
<FieldDescriptor: Withdrawal.account_id: str>
>>> Withdrawal.amount
<FieldDescriptor: Withdrawal.amount: float = 0.0>
Parameters
  • field (str) – Name of field.

  • type (Type) – Field value type.

  • required (bool) – Set to false if field is optional.

  • default (Any) – Default value when required=False.

Keyword Arguments
  • model (Type) – Model class the field belongs to.

  • parent (FieldDescriptorT) – parent field if any.

standbys

Describes a field.

Used for every field in Record so that they can be used in join’s /group_by etc.

Examples

>>> class Withdrawal(Record):
...    account_id: str
...    amount: float = 0.0
>>> Withdrawal.account_id
<FieldDescriptor: Withdrawal.account_id: str>
>>> Withdrawal.amount
<FieldDescriptor: Withdrawal.amount: float = 0.0>
Parameters
  • field (str) – Name of field.

  • type (Type) – Field value type.

  • required (bool) – Set to false if field is optional.

  • default (Any) – Default value when required=False.

Keyword Arguments
  • model (Type) – Model class the field belongs to.

  • parent (FieldDescriptorT) – parent field if any.

property active_tps
Return type

Set[TP]

property standby_tps
Return type

Set[TP]

kafka_protocol_assignment(table_manager: faust.types.tables.TableManagerT) → Sequence[Tuple[str, List[int]]][source]
Return type

Sequence[Tuple[str, List[int]]]

add_copartitioned_assignment(assignment: faust.assignor.client_assignment.CopartitionedAssignment) → None[source]
Return type

None

copartitioned_assignment(topics: Set[str]) → faust.assignor.client_assignment.CopartitionedAssignment[source]
Return type

CopartitionedAssignment

asdict()
class faust.assignor.client_assignment.ClientMetadata(assignment, url, changelog_distribution, topic_groups=None, *, __strict__=True, __faust=None, **kwargs) → None[source]

Client Metadata data model.

assignment

Describes a field.

Used for every field in Record so that they can be used in join’s /group_by etc.

Examples

>>> class Withdrawal(Record):
...    account_id: str
...    amount: float = 0.0
>>> Withdrawal.account_id
<FieldDescriptor: Withdrawal.account_id: str>
>>> Withdrawal.amount
<FieldDescriptor: Withdrawal.amount: float = 0.0>
Parameters
  • field (str) – Name of field.

  • type (Type) – Field value type.

  • required (bool) – Set to false if field is optional.

  • default (Any) – Default value when required=False.

Keyword Arguments
  • model (Type) – Model class the field belongs to.

  • parent (FieldDescriptorT) – parent field if any.

url
asdict()
changelog_distribution

Describes a field.

Used for every field in Record so that they can be used in join’s /group_by etc.

Examples

>>> class Withdrawal(Record):
...    account_id: str
...    amount: float = 0.0
>>> Withdrawal.account_id
<FieldDescriptor: Withdrawal.account_id: str>
>>> Withdrawal.amount
<FieldDescriptor: Withdrawal.amount: float = 0.0>
Parameters
  • field (str) – Name of field.

  • type (Type) – Field value type.

  • required (bool) – Set to false if field is optional.

  • default (Any) – Default value when required=False.

Keyword Arguments
  • model (Type) – Model class the field belongs to.

  • parent (FieldDescriptorT) – parent field if any.

topic_groups
faust.assignor.cluster_assignment

Cluster assignment.

faust.assignor.cluster_assignment.CopartMapping

alias of typing.MutableMapping

class faust.assignor.cluster_assignment.ClusterAssignment(subscriptions=None, assignments=None, *, __strict__=True, __faust=None, **kwargs) → None[source]

Cluster assignment state.

subscriptions

Describes a field.

Used for every field in Record so that they can be used in join’s /group_by etc.

Examples

>>> class Withdrawal(Record):
...    account_id: str
...    amount: float = 0.0
>>> Withdrawal.account_id
<FieldDescriptor: Withdrawal.account_id: str>
>>> Withdrawal.amount
<FieldDescriptor: Withdrawal.amount: float = 0.0>
Parameters
  • field (str) – Name of field.

  • type (Type) – Field value type.

  • required (bool) – Set to false if field is optional.

  • default (Any) – Default value when required=False.

Keyword Arguments
  • model (Type) – Model class the field belongs to.

  • parent (FieldDescriptorT) – parent field if any.

assignments

Describes a field.

Used for every field in Record so that they can be used in join’s /group_by etc.

Examples

>>> class Withdrawal(Record):
...    account_id: str
...    amount: float = 0.0
>>> Withdrawal.account_id
<FieldDescriptor: Withdrawal.account_id: str>
>>> Withdrawal.amount
<FieldDescriptor: Withdrawal.amount: float = 0.0>
Parameters
  • field (str) – Name of field.

  • type (Type) – Field value type.

  • required (bool) – Set to false if field is optional.

  • default (Any) – Default value when required=False.

Keyword Arguments
  • model (Type) – Model class the field belongs to.

  • parent (FieldDescriptorT) – parent field if any.

topics() → Set[str][source]
Return type

Set[str]

add_client(client: str, subscription: List[str], metadata: faust.assignor.client_assignment.ClientMetadata) → None[source]
Return type

None

copartitioned_assignments(copartitioned_topics: Set[str]) → MutableMapping[str, faust.assignor.client_assignment.CopartitionedAssignment][source]
Return type

MutableMapping[str, CopartitionedAssignment]

asdict()
faust.assignor.copartitioned_assignor

Copartitioned Assignor.

class faust.assignor.copartitioned_assignor.CopartitionedAssignor(topics: Iterable[str], cluster_asgn: MutableMapping[str, faust.assignor.client_assignment.CopartitionedAssignment], num_partitions: int, replicas: int, capacity: int = None) → None[source]

Copartitioned Assignor.

All copartitioned topics must have the same number of partitions

The assignment is sticky which uses the following heuristics:

  • Maintain existing assignments as long as within capacity for each client

  • Assign actives to standbys when possible (within capacity)

  • Assign in order to fill capacity of the clients

We optimize for not over utilizing resources instead of under-utilizing resources. This results in a balanced assignment when capacity is the default value which is ceil(num partitions / num clients)

Notes

Currently we raise an exception if number of clients is not enough for the desired replication.

get_assignment() → MutableMapping[str, faust.assignor.client_assignment.CopartitionedAssignment][source]
Return type

MutableMapping[str, CopartitionedAssignment]

faust.assignor.leader_assignor

Leader assignor.

class faust.assignor.leader_assignor.LeaderAssignor(app: faust.types.app.AppT, **kwargs) → None[source]

Leader assignor, ensures election of a leader.

is_leader() → bool[source]
Return type

bool

logger = <Logger faust.assignor.leader_assignor (WARNING)>
faust.assignor.partition_assignor

Partition assignor.

faust.assignor.partition_assignor.MemberAssignmentMapping

alias of typing.MutableMapping

faust.assignor.partition_assignor.MemberMetadataMapping

alias of typing.MutableMapping

faust.assignor.partition_assignor.MemberSubscriptionMapping

alias of typing.MutableMapping

faust.assignor.partition_assignor.ClientMetadataMapping

alias of typing.MutableMapping

faust.assignor.partition_assignor.ClientAssignmentMapping

alias of typing.MutableMapping

faust.assignor.partition_assignor.CopartitionedGroups

alias of typing.MutableMapping

class faust.assignor.partition_assignor.PartitionAssignor(app: faust.types.app.AppT, replicas: int = 0) → None[source]

PartitionAssignor handles internal topic creation.

Further, this assignor needs to be sticky and potentially redundant

Notes

Interface copied from kafka.coordinator.assignors.abstract.

group_for_topic(topic: str) → int[source]
Return type

int

property changelog_distribution
Return type

MutableMapping[str, MutableMapping[str, List[int]]]

on_assignment(assignment: kafka.coordinator.protocol.ConsumerProtocolMemberMetadata) → None[source]

Callback that runs on each assignment.

This method can be used to update internal state, if any, of the partition assignor.

Parameters

assignment (MemberAssignment) – the member’s assignment

Return type

None

metadata(topics: Set[str]) → kafka.coordinator.protocol.ConsumerProtocolMemberMetadata[source]

Generate ProtocolMetadata to be submitted via JoinGroupRequest.

Parameters

topics (set) – a member’s subscribed topics

Return type

ConsumerProtocolMemberMetadata

Returns

MemberMetadata struct

assign(cluster: kafka.cluster.ClusterMetadata, member_metadata: MutableMapping[str, kafka.coordinator.protocol.ConsumerProtocolMemberMetadata]) → MutableMapping[str, kafka.coordinator.protocol.ConsumerProtocolMemberAssignment][source]

Perform group assignment given cluster metadata and member subscriptions

Parameters
  • cluster (ClusterMetadata) – metadata for use in assignment

  • (dict of {member_id (members) – MemberMetadata}): decoded metadata for each member in the group.

Return type

MutableMapping[str, ConsumerProtocolMemberAssignment]

Returns

{member_id: MemberAssignment}

Return type

dict

property name

.name should be a string identifying the assignor :rtype: str

property version
Return type

int

assigned_standbys() → Set[faust.types.tuples.TP][source]
Return type

Set[TP]

assigned_actives() → Set[faust.types.tuples.TP][source]
Return type

Set[TP]

table_metadata(topic: str) → MutableMapping[str, MutableMapping[str, List[int]]][source]
Return type

MutableMapping[str, MutableMapping[str, List[int]]]

tables_metadata() → MutableMapping[str, MutableMapping[str, List[int]]][source]
Return type

MutableMapping[str, MutableMapping[str, List[int]]]

key_store(topic: str, key: bytes) → yarl.URL[source]
Return type

URL

is_active(tp: faust.types.tuples.TP) → bool[source]
Return type

bool

is_standby(tp: faust.types.tuples.TP) → bool[source]
Return type

bool

Types

faust.types.agents
faust.types.agents.AgentErrorHandler

alias of typing.Callable

faust.types.agents.AgentFun

alias of typing.Callable

faust.types.agents.SinkT = typing.Union[_ForwardRef('AgentT'), faust.types.channels.ChannelT, typing.Callable[[typing.Any], typing.Union[typing.Awaitable, NoneType]]]

Agent, Channel or callable/async callable taking value as argument.

Type

A sink can be

class faust.types.agents.ActorT(agent: faust.types.agents.AgentT, stream: faust.types.streams.StreamT, it: _T, active_partitions: Set[faust.types.tuples.TP] = None, **kwargs) → None[source]
index = None

If multiple instance are started for concurrency, this is its index.

abstract cancel() → None[source]
Return type

None

class faust.types.agents.AsyncIterableActorT(agent: faust.types.agents.AgentT, stream: faust.types.streams.StreamT, it: _T, active_partitions: Set[faust.types.tuples.TP] = None, **kwargs) → None[source]

Used for agent function that yields.

class faust.types.agents.AwaitableActorT(agent: faust.types.agents.AgentT, stream: faust.types.streams.StreamT, it: _T, active_partitions: Set[faust.types.tuples.TP] = None, **kwargs) → None[source]

Used for agent function that do not yield.

faust.types.agents.ActorRefT

alias of faust.types.agents.ActorT

class faust.types.agents.AgentT(fun: Callable[faust.types.streams.StreamT, Union[Coroutine[[Any, Any], None], Awaitable[None], AsyncIterable]], *, name: str = None, app: faust.types.agents._AppT = None, channel: Union[str, faust.types.channels.ChannelT] = None, concurrency: int = 1, sink: Iterable[Union[AgentT, faust.types.channels.ChannelT, Callable[Any, Optional[Awaitable]]]] = None, on_error: Callable[[AgentT, BaseException], Awaitable] = None, supervisor_strategy: Type[mode.types.supervisors.SupervisorStrategyT] = None, help: str = None, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, isolated_partitions: bool = False, **kwargs) → None[source]
abstract test_context(channel: faust.types.channels.ChannelT = None, supervisor_strategy: mode.types.supervisors.SupervisorStrategyT = None, **kwargs) → faust.types.agents.AgentTestWrapperT[source]
Return type

AgentTestWrapperT[]

abstract add_sink(sink: Union[AgentT, faust.types.channels.ChannelT, Callable[Any, Optional[Awaitable]]]) → None[source]
Return type

None

abstract stream(**kwargs) → faust.types.streams.StreamT[source]
Return type

StreamT[+T_co]

abstract info() → Mapping[source]
Return type

Mapping[~KT, +VT_co]

abstract clone(*, cls: Type[AgentT] = None, **kwargs) → faust.types.agents.AgentT[source]
Return type

AgentT[]

abstract get_topic_names() → Iterable[str][source]
Return type

Iterable[str]

abstract property channel
Return type

ChannelT[]

abstract property channel_iterator
Return type

AsyncIterator[+T_co]

class faust.types.agents.AgentManagerT(*, beacon: mode.utils.types.trees.NodeT = None, loop: asyncio.events.AbstractEventLoop = None) → None[source]
class faust.types.agents.AgentTestWrapperT(*args, original_channel: faust.types.channels.ChannelT = None, **kwargs) → None[source]
sent_offset = 0
processed_offset = 0
abstract to_message(key: Union[bytes, faust.types.core._ModelT, Any, None], value: Union[bytes, faust.types.core._ModelT, Any], *, partition: int = 0, offset: int = 0, timestamp: float = None, timestamp_type: int = 0, headers: Union[List[Tuple[str, bytes]], Mapping[str, bytes]] = None) → faust.types.tuples.Message[source]
Return type

Message

faust.types.app
class faust.types.app.AppT(id: str, *, monitor: faust.types.app._Monitor, config_source: Any = None, **options) → None[source]

Abstract type for the Faust application.

See also

faust.App.

finalized = False

Set to true when the app is finalized (can read configuration).

configured = False

Set to true when the app has read configuration.

rebalancing = False

Set to true if the worker is currently rebalancing.

rebalancing_count = 0
unassigned = False
in_worker = False
on_configured(*args, **kwargs) → None = <SyncSignal: AppT.on_configured>
on_before_configured(*args, **kwargs) → None = <SyncSignal: AppT.on_before_configured>
on_after_configured(*args, **kwargs) → None = <SyncSignal: AppT.on_after_configured>
on_partitions_assigned(*args, **kwargs) → None = <Signal: AppT.on_partitions_assigned>
on_partitions_revoked(*args, **kwargs) → None = <Signal: AppT.on_partitions_revoked>
on_rebalance_complete(*args, **kwargs) → None = <Signal: AppT.on_rebalance_complete>
on_before_shutdown(*args, **kwargs) → None = <Signal: AppT.on_before_shutdown>
on_worker_init(*args, **kwargs) → None = <SyncSignal: AppT.on_worker_init>
on_produce_message(*args, **kwargs) → None = <SyncSignal: AppT.on_produce_message>
abstract config_from_object(obj: Any, *, silent: bool = False, force: bool = False) → None[source]
Return type

None

abstract finalize() → None[source]
Return type

None

abstract main() → NoReturn[source]
Return type

_NoReturn

abstract worker_init() → None[source]
Return type

None

abstract discover(*extra_modules, categories: Iterable[str] = ('a', 'b', 'c'), ignore: Iterable[Any] = ('foo', 'bar')) → None[source]
Return type

None

abstract topic(*topics, pattern: Union[str, Pattern[~AnyStr]] = None, key_type: faust.types.app._ModelArg = None, value_type: faust.types.app._ModelArg = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, partitions: int = None, retention: Union[datetime.timedelta, float, str] = None, compacting: bool = None, deleting: bool = None, replicas: int = None, acks: bool = True, internal: bool = False, config: Mapping[str, Any] = None, maxsize: int = None, allow_empty: bool = False, loop: asyncio.events.AbstractEventLoop = None) → faust.types.topics.TopicT[source]
Return type

TopicT[]

abstract channel(*, key_type: faust.types.app._ModelArg = None, value_type: faust.types.app._ModelArg = None, maxsize: int = None, loop: asyncio.events.AbstractEventLoop = None) → faust.types.channels.ChannelT[source]
Return type

ChannelT[]

abstract agent(channel: Union[str, faust.types.channels.ChannelT] = None, *, name: str = None, concurrency: int = 1, supervisor_strategy: Type[mode.types.supervisors.SupervisorStrategyT] = None, sink: Iterable[Union[AgentT, faust.types.channels.ChannelT, Callable[Any, Optional[Awaitable]]]] = None, isolated_partitions: bool = False, use_reply_headers: bool = False, **kwargs) → Callable[Callable[faust.types.streams.StreamT, Union[Coroutine[[Any, Any], None], Awaitable[None], AsyncIterable]], faust.types.agents.AgentT][source]
Return type

Callable[[Callable[[StreamT[+T_co]], Union[Coroutine[Any, Any, None], Awaitable[None], AsyncIterable[+T_co]]]], AgentT[]]

abstract task(fun: Union[Callable[AppT, Awaitable], Callable[Awaitable]], *, on_leader: bool = False, traced: bool = True) → Callable[source]
abstract timer(interval: Union[datetime.timedelta, float, str], on_leader: bool = False, traced: bool = True, name: str = None, max_drift_correction: float = 0.1) → Callable[source]
Return type

Callable

abstract crontab(cron_format: str, *, timezone: datetime.tzinfo = None, on_leader: bool = False, traced: bool = True) → Callable[source]
Return type

Callable

abstract service(cls: Type[mode.types.services.ServiceT]) → Type[mode.types.services.ServiceT][source]
Return type

Type[ServiceT[]]

abstract stream(channel: AsyncIterable, beacon: mode.utils.types.trees.NodeT = None, **kwargs) → faust.types.streams.StreamT[source]
Return type

StreamT[+T_co]

abstract Table(name: str, *, default: Callable[Any] = None, window: faust.types.windows.WindowT = None, partitions: int = None, help: str = None, **kwargs) → faust.types.tables.TableT[source]
Return type

TableT[~KT, ~VT]

abstract SetTable(name: str, *, window: faust.types.windows.WindowT = None, partitions: int = None, start_manager: bool = False, help: str = None, **kwargs) → faust.types.tables.TableT[source]
Return type

TableT[~KT, ~VT]

abstract page(path: str, *, base: Type[faust.types.web.View] = <class 'faust.types.web.View'>, cors_options: Mapping[str, faust.types.web.ResourceOptions] = None, name: str = None) → Callable[Union[Type[faust.types.web.View], Callable[[faust.types.web.View, faust.types.web.Request], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]], Callable[[faust.types.web.View, faust.types.web.Request, Any, Any], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]]], Type[faust.types.web.View]][source]
Return type

Callable[[Union[Type[View], Callable[[View, Request], Union[Coroutine[Any, Any, Response], Awaitable[Response]]], Callable[[View, Request, Any, Any], Union[Coroutine[Any, Any, Response], Awaitable[Response]]]]], Type[View]]

abstract table_route(table: faust.types.tables.CollectionT, shard_param: str = None, *, query_param: str = None, match_info: str = None, exact_key: str = None) → Callable[Union[Callable[[faust.types.web.View, faust.types.web.Request], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]], Callable[[faust.types.web.View, faust.types.web.Request, Any, Any], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]]], Union[Callable[[faust.types.web.View, faust.types.web.Request], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]], Callable[[faust.types.web.View, faust.types.web.Request, Any, Any], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]]]][source]
Return type

Callable[[Union[Callable[[View, Request], Union[Coroutine[Any, Any, Response], Awaitable[Response]]], Callable[[View, Request, Any, Any], Union[Coroutine[Any, Any, Response], Awaitable[Response]]]]], Union[Callable[[View, Request], Union[Coroutine[Any, Any, Response], Awaitable[Response]]], Callable[[View, Request, Any, Any], Union[Coroutine[Any, Any, Response], Awaitable[Response]]]]]

abstract command(*options, base: Type[faust.types.app._AppCommand] = None, **kwargs) → Callable[Callable, Type[faust.types.app._AppCommand]][source]
Return type

Callable[[Callable], Type[_AppCommand]]

abstract LiveCheck(**kwargs) → faust.types.app._LiveCheck[source]
Return type

_LiveCheck

maybe_start_producer[source]
Return type

ProducerT[]

abstract is_leader() → bool[source]
Return type

bool

abstract FlowControlQueue(maxsize: int = None, *, clear_on_resume: bool = False, loop: asyncio.events.AbstractEventLoop = None) → mode.utils.queues.ThrowableQueue[source]
Return type

ThrowableQueue

abstract Worker(**kwargs) → faust.types.app._Worker[source]
Return type

_Worker

abstract on_webserver_init(web: faust.types.web.Web) → None[source]
Return type

None

abstract on_rebalance_start() → None[source]
Return type

None

abstract on_rebalance_end() → None[source]
Return type

None

property conf
Return type

_Settings

abstract property transport
Return type

TransportT

abstract property producer_transport
Return type

TransportT

abstract property cache
Return type

CacheBackendT[]

abstract property producer
Return type

ProducerT[]

abstract property consumer
Return type

ConsumerT[]

tables[source]
topics[source]
abstract property monitor
Return type

_Monitor

flow_control[source]
abstract property http_client
Return type

ClientSession

abstract property assignor
Return type

PartitionAssignorT

abstract property router
Return type

RouterT

abstract property serializers
Return type

RegistryT

abstract property web
Return type

Web

abstract property in_transaction
Return type

bool

faust.types.assignor
faust.types.assignor.TopicToPartitionMap

alias of typing.MutableMapping

faust.types.assignor.HostToPartitionMap

alias of typing.MutableMapping

class faust.types.assignor.PartitionAssignorT(app: faust.types.assignor._AppT, replicas: int = 0) → None[source]
abstract group_for_topic(topic: str) → int[source]
Return type

int

abstract assigned_standbys() → Set[faust.types.tuples.TP][source]
Return type

Set[TP]

abstract assigned_actives() → Set[faust.types.tuples.TP][source]
Return type

Set[TP]

abstract is_active(tp: faust.types.tuples.TP) → bool[source]
Return type

bool

abstract is_standby(tp: faust.types.tuples.TP) → bool[source]
Return type

bool

abstract key_store(topic: str, key: bytes) → yarl.URL[source]
Return type

URL

abstract table_metadata(topic: str) → MutableMapping[str, MutableMapping[str, List[int]]][source]
Return type

MutableMapping[str, MutableMapping[str, List[int]]]

abstract tables_metadata() → MutableMapping[str, MutableMapping[str, List[int]]][source]
Return type

MutableMapping[str, MutableMapping[str, List[int]]]

class faust.types.assignor.LeaderAssignorT(*, beacon: mode.utils.types.trees.NodeT = None, loop: asyncio.events.AbstractEventLoop = None) → None[source]
abstract is_leader() → bool[source]
Return type

bool

faust.types.auth
class faust.types.auth.AuthProtocol[source]

An enumeration.

SSL = 'SSL'
PLAINTEXT = 'PLAINTEXT'
SASL_PLAINTEXT = 'SASL_PLAINTEXT'
SASL_SSL = 'SASL_SSL'
class faust.types.auth.SASLMechanism[source]

An enumeration.

PLAIN = 'PLAIN'
GSSAPI = 'GSSAPI'
class faust.types.auth.CredentialsT(*args, **kwargs)[source]
faust.types.auth.to_credentials(obj: Union[faust.types.auth.CredentialsT, ssl.SSLContext] = None) → Optional[faust.types.auth.CredentialsT][source]
Return type

Optional[CredentialsT]

faust.types.channels
class faust.types.channels.ChannelT(app: faust.types.channels._AppT, *, key_type: faust.types.channels._ModelArg = None, value_type: faust.types.channels._ModelArg = None, is_iterator: bool = False, queue: mode.utils.queues.ThrowableQueue = None, maxsize: int = None, root: Optional[faust.types.channels.ChannelT] = None, active_partitions: Set[faust.types.tuples.TP] = None, loop: asyncio.events.AbstractEventLoop = None) → None[source]
abstract clone(*, is_iterator: bool = None, **kwargs) → faust.types.channels.ChannelT[source]
Return type

ChannelT[]

abstract clone_using_queue(queue: asyncio.queues.Queue) → faust.types.channels.ChannelT[source]
Return type

ChannelT[]

abstract stream(**kwargs) → faust.types.channels._StreamT[source]
Return type

_StreamT

abstract get_topic_name() → str[source]
Return type

str

abstract send_soon(*, key: Union[bytes, faust.types.core._ModelT, Any, None] = None, value: Union[bytes, faust.types.core._ModelT, Any] = None, partition: int = None, timestamp: float = None, headers: Union[List[Tuple[str, bytes]], Mapping[str, bytes]] = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, callback: Callable[faust.types.tuples.FutureMessage, Union[None, Awaitable[None]]] = None, force: bool = False) → faust.types.tuples.FutureMessage[source]
Return type

FutureMessage[]

abstract as_future_message(key: Union[bytes, faust.types.core._ModelT, Any, None] = None, value: Union[bytes, faust.types.core._ModelT, Any] = None, partition: int = None, timestamp: float = None, headers: Union[List[Tuple[str, bytes]], Mapping[str, bytes]] = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, callback: Callable[faust.types.tuples.FutureMessage, Union[None, Awaitable[None]]] = None) → faust.types.tuples.FutureMessage[source]
Return type

FutureMessage[]

maybe_declare[source]
Return type

None

abstract prepare_key(key: Union[bytes, faust.types.core._ModelT, Any, None], key_serializer: Union[faust.types.codecs.CodecT, str, None]) → Any[source]
Return type

Any

abstract prepare_value(value: Union[bytes, faust.types.core._ModelT, Any], value_serializer: Union[faust.types.codecs.CodecT, str, None]) → Any[source]
Return type

Any

abstract empty() → bool[source]
Return type

bool

abstract on_stop_iteration() → None[source]
Return type

None

abstract derive(**kwargs) → faust.types.channels.ChannelT[source]
Return type

ChannelT[]

abstract property subscriber_count
Return type

int

abstract property queue
Return type

ThrowableQueue

faust.types.codecs
class faust.types.codecs.CodecT(children: Tuple[CodecT, ...] = None, **kwargs)[source]

Abstract type for an encoder/decoder.

abstract dumps(obj: Any) → bytes[source]
Return type

bytes

abstract loads(s: bytes) → Any[source]
Return type

Any

abstract clone(*children) → faust.types.codecs.CodecT[source]
Return type

CodecT

faust.types.core
faust.types.core.K = typing.Union[bytes, faust.types.core._ModelT, typing.Any, NoneType]

Shorthand for the type of a key

faust.types.core.V = typing.Union[bytes, faust.types.core._ModelT, typing.Any]

Shorthand for the type of a value

faust.types.enums
class faust.types.enums.ProcessingGuarantee[source]

An enumeration.

AT_LEAST_ONCE = 'at_least_once'
EXACTLY_ONCE = 'exactly_once'
faust.types.events
class faust.types.events.EventT(app: faust.types.events._AppT, key: Union[bytes, faust.types.core._ModelT, Any, None], value: Union[bytes, faust.types.core._ModelT, Any], headers: Union[List[Tuple[str, bytes]], Mapping[str, bytes], None], message: faust.types.tuples.Message) → None[source]
app
key
value
headers
message
acked
abstract ack() → bool[source]
Return type

bool

faust.types.fixups
class faust.types.fixups.FixupT(app: faust.types.fixups._AppT) → None[source]
abstract enabled() → bool[source]
Return type

bool

abstract autodiscover_modules() → Iterable[str][source]
Return type

Iterable[str]

abstract on_worker_init() → None[source]
Return type

None

faust.types.joins
class faust.types.joins.JoinT(*, stream: faust.types.streams.JoinableT, fields: Tuple[faust.types.models.FieldDescriptorT, ...]) → None[source]
faust.types.models
faust.types.models.FieldMap

alias of typing.Mapping

faust.types.models.CoercionHandler

alias of typing.Callable

class faust.types.models.TypeCoerce(*args, **kwargs)[source]
property target

Alias for field number 0

property handler

Alias for field number 1

class faust.types.models.TypeInfo(*args, **kwargs)[source]
property generic_type

Alias for field number 0

property member_type

Alias for field number 1

class faust.types.models.ModelOptions(*args, **kwargs)[source]
serializer = None
include_metadata = True
polymorphic_fields = False
allow_blessed_key = False
isodates = False
decimals = False
validation = False
coerce = False
coercions = None
date_parser = None
fields = None

Flattened view of __annotations__ in MRO order.

Type

Index

fieldset = None

Set of required field names, for fast argument checking.

Type

Index

descriptors = None

Mapping of field name to field descriptor.

Type

Index

fieldpos = None

Positional argument index to field name. Used by Record.__init__ to map positional arguments to fields.

Type

Index

optionalset = None

Set of optional field names, for fast argument checking.

Type

Index

models = None

Mapping of fields that are ModelT

Type

Index

modelattrs = None
field_coerce = None

Mapping of fields that need to be coerced. Key is the name of the field, value is the coercion handler function.

Type

Index

defaults = None

Mapping of field names to default value.

initfield = None

Mapping of init field conversion callbacks.

polyindex = None

Index of field to polymorphic type

clone_defaults() → faust.types.models.ModelOptions[source]
Return type

ModelOptions

class faust.types.models.ModelT(*args, **kwargs) → None[source]
abstract classmethod from_data(data: Any, *, preferred_type: Type[ModelT] = None) → faust.types.models.ModelT[source]
Return type

ModelT

abstract classmethod loads(s: bytes, *, default_serializer: Union[faust.types.codecs.CodecT, str, None] = None, serializer: Union[faust.types.codecs.CodecT, str, None] = None) → faust.types.models.ModelT[source]
Return type

ModelT

abstract dumps(*, serializer: Union[faust.types.codecs.CodecT, str, None] = None) → bytes[source]
Return type

bytes

abstract derive(*objects, **fields) → faust.types.models.ModelT[source]
Return type

ModelT

abstract to_representation() → Any[source]
Return type

Any

abstract is_valid() → bool[source]
Return type

bool

abstract validate() → List[faust.exceptions.ValidationError][source]
Return type

List[ValidationError]

abstract validate_or_raise() → None[source]
Return type

None

abstract property validation_errors
Return type

List[ValidationError]

class faust.types.models.FieldDescriptorT(*, field: str = None, type: Type[T] = None, model: Type[faust.types.models.ModelT] = None, required: bool = True, default: T = None, parent: Optional[faust.types.models.FieldDescriptorT] = None, generic_type: Type = None, member_type: Type = None, exclude: bool = None, date_parser: Callable[Any, datetime.datetime] = None, **kwargs) → None[source]
required = True
default = None
abstract validate(value: T) → Iterable[faust.exceptions.ValidationError][source]
Return type

Iterable[ValidationError]

abstract prepare_value(value: Any) → Optional[T][source]
Return type

Optional[~T]

abstract getattr(obj: faust.types.models.ModelT) → T[source]
Return type

~T

abstract property ident
Return type

str

faust.types.router

Types for module faust.router.

class faust.types.router.RouterT(app: faust.types.router._AppT) → None[source]

Router type class.

abstract key_store(table_name: str, key: Union[bytes, faust.types.core._ModelT, Any, None]) → yarl.URL[source]
Return type

URL

abstract table_metadata(table_name: str) → MutableMapping[str, MutableMapping[str, List[int]]][source]
Return type

MutableMapping[str, MutableMapping[str, List[int]]]

abstract tables_metadata() → MutableMapping[str, MutableMapping[str, List[int]]][source]
Return type

MutableMapping[str, MutableMapping[str, List[int]]]

faust.types.sensors
class faust.types.sensors.SensorInterfaceT[source]
abstract on_message_in(tp: faust.types.tuples.TP, offset: int, message: faust.types.tuples.Message) → None[source]
Return type

None

abstract on_stream_event_in(tp: faust.types.tuples.TP, offset: int, stream: faust.types.streams.StreamT, event: faust.types.events.EventT) → Optional[Dict][source]
Return type

Optional[Dict[~KT, ~VT]]

abstract on_stream_event_out(tp: faust.types.tuples.TP, offset: int, stream: faust.types.streams.StreamT, event: faust.types.events.EventT, state: Dict = None) → None[source]
Return type

None

abstract on_topic_buffer_full(topic: faust.types.topics.TopicT) → None[source]
Return type

None

abstract on_message_out(tp: faust.types.tuples.TP, offset: int, message: faust.types.tuples.Message) → None[source]
Return type

None

abstract on_table_get(table: faust.types.tables.CollectionT, key: Any) → None[source]
Return type

None

abstract on_table_set(table: faust.types.tables.CollectionT, key: Any, value: Any) → None[source]
Return type

None

abstract on_table_del(table: faust.types.tables.CollectionT, key: Any) → None[source]
Return type

None

abstract on_commit_initiated(consumer: faust.types.transports.ConsumerT) → Any[source]
Return type

Any

abstract on_commit_completed(consumer: faust.types.transports.ConsumerT, state: Any) → None[source]
Return type

None

abstract on_send_initiated(producer: faust.types.transports.ProducerT, topic: str, message: faust.types.tuples.PendingMessage, keysize: int, valsize: int) → Any[source]
Return type

Any

abstract on_send_completed(producer: faust.types.transports.ProducerT, state: Any, metadata: faust.types.tuples.RecordMetadata) → None[source]
Return type

None

abstract on_send_error(producer: faust.types.transports.ProducerT, exc: BaseException, state: Any) → None[source]
Return type

None

abstract on_assignment_start(assignor: faust.types.assignor.PartitionAssignorT) → Dict[source]
Return type

Dict[~KT, ~VT]

abstract on_assignment_error(assignor: faust.types.assignor.PartitionAssignorT, state: Dict, exc: BaseException) → None[source]
Return type

None

abstract on_assignment_completed(assignor: faust.types.assignor.PartitionAssignorT, state: Dict) → None[source]
Return type

None

abstract on_rebalance_start(app: faust.types.sensors._AppT) → Dict[source]
Return type

Dict[~KT, ~VT]

abstract on_rebalance_return(app: faust.types.sensors._AppT, state: Dict) → None[source]
Return type

None

abstract on_rebalance_end(app: faust.types.sensors._AppT, state: Dict) → None[source]
Return type

None

class faust.types.sensors.SensorT(*, beacon: mode.utils.types.trees.NodeT = None, loop: asyncio.events.AbstractEventLoop = None) → None[source]
class faust.types.sensors.SensorDelegateT[source]
abstract add(sensor: faust.types.sensors.SensorT) → None[source]
Return type

None

abstract remove(sensor: faust.types.sensors.SensorT) → None[source]
Return type

None

faust.types.serializers
class faust.types.serializers.RegistryT(key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = 'json') → None[source]
abstract loads_key(typ: Optional[faust.types.serializers._ModelArg], key: Optional[bytes], *, serializer: Union[faust.types.codecs.CodecT, str, None] = None) → Union[bytes, faust.types.core._ModelT, Any, None][source]
Return type

Union[bytes, _ModelT, Any, None]

abstract loads_value(typ: Optional[faust.types.serializers._ModelArg], value: Optional[bytes], *, serializer: Union[faust.types.codecs.CodecT, str, None] = None) → Any[source]
Return type

Any

abstract dumps_key(typ: Optional[faust.types.serializers._ModelArg], key: Union[bytes, faust.types.core._ModelT, Any, None], *, serializer: Union[faust.types.codecs.CodecT, str, None] = None) → Optional[bytes][source]
Return type

Optional[bytes]

abstract dumps_value(typ: Optional[faust.types.serializers._ModelArg], value: Union[bytes, faust.types.core._ModelT, Any], *, serializer: Union[faust.types.codecs.CodecT, str, None] = None) → Optional[bytes][source]
Return type

Optional[bytes]

faust.types.settings
class faust.types.settings.Settings(id: str, *, debug: bool = None, version: int = None, broker: Union[str, yarl.URL, List[yarl.URL]] = None, broker_client_id: str = None, broker_request_timeout: Union[datetime.timedelta, float, str] = None, broker_credentials: Union[faust.types.auth.CredentialsT, ssl.SSLContext] = None, broker_commit_every: int = None, broker_commit_interval: Union[datetime.timedelta, float, str] = None, broker_commit_livelock_soft_timeout: Union[datetime.timedelta, float, str] = None, broker_session_timeout: Union[datetime.timedelta, float, str] = None, broker_heartbeat_interval: Union[datetime.timedelta, float, str] = None, broker_check_crcs: bool = None, broker_max_poll_records: int = None, broker_max_poll_interval: int = None, broker_consumer: Union[str, yarl.URL, List[yarl.URL]] = None, broker_producer: Union[str, yarl.URL, List[yarl.URL]] = None, agent_supervisor: Union[_T, str] = None, store: Union[str, yarl.URL] = None, cache: Union[str, yarl.URL] = None, web: Union[str, yarl.URL] = None, web_enabled: bool = True, processing_guarantee: Union[str, faust.types.enums.ProcessingGuarantee] = None, timezone: datetime.tzinfo = None, autodiscover: Union[bool, Iterable[str], Callable[Iterable[str]]] = None, origin: str = None, canonical_url: Union[str, yarl.URL] = None, datadir: Union[pathlib.Path, str] = None, tabledir: Union[pathlib.Path, str] = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, logging_config: Dict = None, loghandlers: List[logging.Handler] = None, table_cleanup_interval: Union[datetime.timedelta, float, str] = None, table_standby_replicas: int = None, table_key_index_size: int = None, topic_replication_factor: int = None, topic_partitions: int = None, topic_allow_declare: bool = None, topic_disable_leader: bool = None, id_format: str = None, reply_to: str = None, reply_to_prefix: str = None, reply_create_topic: bool = None, reply_expires: Union[datetime.timedelta, float, str] = None, ssl_context: ssl.SSLContext = None, stream_buffer_maxsize: int = None, stream_wait_empty: bool = None, stream_ack_cancelled_tasks: bool = None, stream_ack_exceptions: bool = None, stream_publish_on_commit: bool = None, stream_recovery_delay: Union[datetime.timedelta, float, str] = None, producer_linger_ms: int = None, producer_max_batch_size: int = None, producer_acks: int = None, producer_max_request_size: int = None, producer_compression_type: str = None, producer_partitioner: Union[_T, str] = None, producer_request_timeout: Union[datetime.timedelta, float, str] = None, producer_api_version: str = None, consumer_max_fetch_size: int = None, consumer_auto_offset_reset: str = None, web_bind: str = None, web_port: int = None, web_host: str = None, web_transport: Union[str, yarl.URL] = None, web_in_thread: bool = None, web_cors_options: Mapping[str, faust.types.web.ResourceOptions] = None, worker_redirect_stdouts: bool = None, worker_redirect_stdouts_level: Union[int, str] = None, Agent: Union[_T, str] = None, ConsumerScheduler: Union[_T, str] = None, Stream: Union[_T, str] = None, Table: Union[_T, str] = None, SetTable: Union[_T, str] = None, TableManager: Union[_T, str] = None, Serializers: Union[_T, str] = None, Worker: Union[_T, str] = None, PartitionAssignor: Union[_T, str] = None, LeaderAssignor: Union[_T, str] = None, Router: Union[_T, str] = None, Topic: Union[_T, str] = None, HttpClient: Union[_T, str] = None, Monitor: Union[_T, str] = None, url: Union[str, yarl.URL] = None, **kwargs) → None[source]
classmethod setting_names() → Set[str][source]
Return type

Set[str]

id_format = '{id}-v{self.version}'
debug = False
ssl_context = None
autodiscover = False
broker_client_id = 'faust-1.7.4'
timezone = datetime.timezone.utc
broker_commit_every = 10000
broker_check_crcs = True
broker_max_poll_interval = 1000.0
key_serializer = 'raw'
value_serializer = 'json'
table_standby_replicas = 1
table_key_index_size = 1000
topic_replication_factor = 1
topic_partitions = 8
topic_allow_declare = True
topic_disable_leader = False
reply_create_topic = False
logging_config = None
stream_buffer_maxsize = 4096
stream_wait_empty = True
stream_ack_cancelled_tasks = True
stream_ack_exceptions = True
stream_publish_on_commit = False
producer_linger_ms = 0
producer_max_batch_size = 16384
producer_acks = -1
producer_max_request_size = 1000000
producer_compression_type = None
producer_api_version = 'auto'
consumer_max_fetch_size = 4194304
consumer_auto_offset_reset = 'earliest'
web_bind = '0.0.0.0'
web_port = 6066
web_host = 'build-9414419-project-230058-faust'
web_in_thread = False
web_cors_options = None
worker_redirect_stdouts = True
worker_redirect_stdouts_level = 'WARN'
reply_to_prefix = 'f-reply-'
property name
Return type

str

property id
Return type

str

property origin
Return type

Optional[str]

property version
Return type

int

property broker
Return type

List[URL]

property broker_consumer
Return type

List[URL]

property broker_producer
Return type

List[URL]

property store
Return type

URL

property web
Return type

URL

property cache
Return type

URL

property canonical_url
Return type

URL

property datadir
Return type

Path

property appdir
Return type

Path

find_old_versiondirs() → Iterable[pathlib.Path][source]
Return type

Iterable[Path]

property tabledir
Return type

Path

property processing_guarantee
Return type

ProcessingGuarantee

property broker_credentials
Return type

Optional[CredentialsT]

property broker_request_timeout
Return type

float

property broker_session_timeout
Return type

float

property broker_heartbeat_interval
Return type

float

property broker_commit_interval
Return type

float

property broker_commit_livelock_soft_timeout
Return type

float

property broker_max_poll_records
Return type

Optional[int]

property producer_partitioner
Return type

Optional[Callable[[Optional[bytes], Sequence[int], Sequence[int]], int]]

property producer_request_timeout
Return type

float

property table_cleanup_interval
Return type

float

property reply_expires
Return type

float

property stream_recovery_delay
Return type

float

property agent_supervisor
Return type

Type[SupervisorStrategyT]

property web_transport
Return type

URL

property Agent
Return type

Type[AgentT[]]

property ConsumerScheduler
Return type

Type[SchedulingStrategyT]

property Stream
Return type

Type[StreamT[+T_co]]

property Table
Return type

Type[TableT[~KT, ~VT]]

property SetTable
Return type

Type[TableT[~KT, ~VT]]

property TableManager
Return type

Type[TableManagerT[]]

property Serializers
Return type

Type[RegistryT]

property Worker
Return type

Type[_WorkerT]

property PartitionAssignor
Return type

Type[PartitionAssignorT]

property LeaderAssignor
Return type

Type[LeaderAssignorT[]]

property Router
Return type

Type[RouterT]

property Topic
Return type

Type[TopicT[]]

property HttpClient
Return type

Type[ClientSession]

property Monitor
Return type

Type[SensorT[]]

faust.types.stores
class faust.types.stores.StoreT(url: Union[str, yarl.URL], app: faust.types.stores._AppT, table: faust.types.stores._CollectionT, *, table_name: str = '', key_type: faust.types.stores._ModelArg = None, value_type: faust.types.stores._ModelArg = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = '', value_serializer: Union[faust.types.codecs.CodecT, str, None] = '', options: Mapping[str, Any] = None, **kwargs) → None[source]
abstract persisted_offset(tp: faust.types.tuples.TP) → Optional[int][source]
Return type

Optional[int]

abstract set_persisted_offset(tp: faust.types.tuples.TP, offset: int) → None[source]
Return type

None

abstract apply_changelog_batch(batch: Iterable[faust.types.events.EventT], to_key: Callable[Any, KT], to_value: Callable[Any, VT]) → None[source]
Return type

None

abstract reset_state() → None[source]
Return type

None

faust.types.streams
faust.types.streams.Processor

alias of typing.Callable

faust.types.streams.GroupByKeyArg = typing.Union[faust.types.models.FieldDescriptorT, typing.Callable[[~T], typing.Union[bytes, faust.types.core._ModelT, typing.Any, NoneType]]]

Type of the key argument to Stream.group_by()

class faust.types.streams.StreamT(channel: AsyncIterator[T_co] = None, *, app: faust.types.streams._AppT = None, processors: Iterable[Callable[T]] = None, combined: List[faust.types.streams.JoinableT] = None, on_start: Callable = None, join_strategy: faust.types.streams._JoinT = None, beacon: mode.utils.types.trees.NodeT = None, concurrency_index: int = None, prev: Optional[faust.types.streams.StreamT] = None, active_partitions: Set[faust.types.tuples.TP] = None, enable_acks: bool = True, prefix: str = '', loop: asyncio.events.AbstractEventLoop = None) → None[source]
outbox = None
join_strategy = None
task_owner = None
current_event = None
active_partitions = None
concurrency_index = None
enable_acks = True
prefix = ''
abstract get_active_stream() → faust.types.streams.StreamT[source]
Return type

StreamT[+T_co]

abstract add_processor(processor: Callable[T]) → None[source]
Return type

None

abstract info() → Mapping[str, Any][source]
Return type

Mapping[str, Any]

abstract clone(**kwargs) → faust.types.streams.StreamT[source]
Return type

StreamT[+T_co]

abstract enumerate(start: int = 0) → AsyncIterable[Tuple[int, T_co]][source]
Return type

AsyncIterable[Tuple[int, +T_co]]

abstract through(channel: Union[str, faust.types.channels.ChannelT]) → faust.types.streams.StreamT[source]
Return type

StreamT[+T_co]

abstract echo(*channels) → faust.types.streams.StreamT[source]
Return type

StreamT[+T_co]

abstract group_by(key: Union[faust.types.models.FieldDescriptorT, Callable[T, Union[bytes, faust.types.core._ModelT, Any, None]]], *, name: str = None, topic: faust.types.topics.TopicT = None) → faust.types.streams.StreamT[source]
Return type

StreamT[+T_co]

abstract derive_topic(name: str, *, key_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, value_type: Union[Type[faust.types.models.ModelT], Type[bytes], Type[str]] = None, prefix: str = '', suffix: str = '') → faust.types.topics.TopicT[source]
Return type

TopicT[]

faust.types.tables
faust.types.tables.RecoverCallback

alias of typing.Callable

faust.types.tables.ChangelogEventCallback

alias of typing.Callable

faust.types.tables.CollectionTps

alias of typing.MutableMapping

class faust.types.tables.CollectionT(app: faust.types.tables._AppT, *, name: str = None, default: Callable[Any] = None, store: Union[str, yarl.URL] = None, key_type: faust.types.tables._ModelArg = None, value_type: faust.types.tables._ModelArg = None, partitions: int = None, window: faust.types.windows.WindowT = None, changelog_topic: faust.types.topics.TopicT = None, help: str = None, on_recover: Callable[Awaitable[None]] = None, on_changelog_event: Callable[faust.types.events.EventT, Awaitable[None]] = None, recovery_buffer_size: int = 1000, standby_buffer_size: int = None, extra_topic_configs: Mapping[str, Any] = None, options: Mapping[str, Any] = None, **kwargs) → None[source]
abstract property changelog_topic
Return type

TopicT[]

abstract apply_changelog_batch(batch: Iterable[faust.types.events.EventT]) → None[source]
Return type

None

abstract persisted_offset(tp: faust.types.tuples.TP) → Optional[int][source]
Return type

Optional[int]

abstract reset_state() → None[source]
Return type

None

abstract on_recover(fun: Callable[Awaitable[None]]) → Callable[Awaitable[None]][source]
Return type

Callable[[], Awaitable[None]]

class faust.types.tables.TableT(app: faust.types.tables._AppT, *, name: str = None, default: Callable[Any] = None, store: Union[str, yarl.URL] = None, key_type: faust.types.tables._ModelArg = None, value_type: faust.types.tables._ModelArg = None, partitions: int = None, window: faust.types.windows.WindowT = None, changelog_topic: faust.types.topics.TopicT = None, help: str = None, on_recover: Callable[Awaitable[None]] = None, on_changelog_event: Callable[faust.types.events.EventT, Awaitable[None]] = None, recovery_buffer_size: int = 1000, standby_buffer_size: int = None, extra_topic_configs: Mapping[str, Any] = None, options: Mapping[str, Any] = None, **kwargs) → None[source]
abstract using_window(window: faust.types.windows.WindowT, *, key_index: bool = False) → faust.types.tables.WindowWrapperT[source]
Return type

WindowWrapperT[]

abstract hopping(size: Union[datetime.timedelta, float, str], step: Union[datetime.timedelta, float, str], expires: Union[datetime.timedelta, float, str] = None, key_index: bool = False) → faust.types.tables.WindowWrapperT[source]
Return type

WindowWrapperT[]

abstract tumbling(size: Union[datetime.timedelta, float, str], expires: Union[datetime.timedelta, float, str] = None, key_index: bool = False) → faust.types.tables.WindowWrapperT[source]
Return type

WindowWrapperT[]

abstract as_ansitable(**kwargs) → str[source]
Return type

str

class faust.types.tables.TableManagerT(app: faust.types.tables._AppT, **kwargs) → None[source]
abstract add(table: faust.types.tables.CollectionT) → faust.types.tables.CollectionT[source]
Return type

CollectionT[]

abstract persist_offset_on_commit(store: faust.types.stores.StoreT, tp: faust.types.tuples.TP, offset: int) → None[source]
Return type

None

abstract on_commit(offsets: MutableMapping[faust.types.tuples.TP, int]) → None[source]
Return type

None

abstract property changelog_topics
Return type

Set[str]

class faust.types.tables.WindowSetT(key: KT, table: faust.types.tables.TableT, wrapper: faust.types.tables.WindowWrapperT, event: faust.types.events.EventT = None) → None[source]
abstract apply(op: Callable[[VT, VT], VT], value: VT, event: faust.types.events.EventT = None) → faust.types.tables.WindowSetT[source]
Return type

WindowSetT[~KT, ~VT]

abstract value(event: faust.types.events.EventT = None) → VT[source]
Return type

~VT

abstract current(event: faust.types.events.EventT = None) → VT[source]
Return type

~VT

abstract now() → VT[source]
Return type

~VT

abstract delta(d: Union[datetime.timedelta, float, str], event: faust.types.events.EventT = None) → VT[source]
Return type

~VT

class faust.types.tables.WindowedItemsViewT(mapping: faust.types.tables.WindowWrapperT, event: faust.types.events.EventT = None)[source]
abstract now() → Iterator[Tuple[Any, Any]][source]
Return type

Iterator[Tuple[Any, Any]]

abstract current(event: faust.types.events.EventT = None) → Iterator[Tuple[Any, Any]][source]
Return type

Iterator[Tuple[Any, Any]]

abstract delta(d: Union[datetime.timedelta, float, str], event: faust.types.events.EventT = None) → Iterator[Tuple[Any, Any]][source]
Return type

Iterator[Tuple[Any, Any]]

class faust.types.tables.WindowedValuesViewT(mapping: faust.types.tables.WindowWrapperT, event: faust.types.events.EventT = None)[source]
abstract now() → Iterator[Any][source]
Return type

Iterator[Any]

abstract current(event: faust.types.events.EventT = None) → Iterator[Any][source]
Return type

Iterator[Any]

abstract delta(d: Union[datetime.timedelta, float, str], event: faust.types.events.EventT = None) → Iterator[Any][source]
Return type

Iterator[Any]

class faust.types.tables.WindowWrapperT(table: faust.types.tables.TableT, *, relative_to: Union[faust.types.tables._FieldDescriptorT, Callable[Optional[faust.types.events.EventT], Union[float, datetime.datetime]], datetime.datetime, float, None] = None) → None[source]
abstract property name
Return type

str

abstract clone(relative_to: Union[faust.types.tables._FieldDescriptorT, Callable[Optional[faust.types.events.EventT], Union[float, datetime.datetime]], datetime.datetime, float, None]) → faust.types.tables.WindowWrapperT[source]
Return type

WindowWrapperT[]

abstract relative_to_now() → faust.types.tables.WindowWrapperT[source]
Return type

WindowWrapperT[]

abstract relative_to_field(field: faust.types.tables._FieldDescriptorT) → faust.types.tables.WindowWrapperT[source]
Return type

WindowWrapperT[]

abstract relative_to_stream() → faust.types.tables.WindowWrapperT[source]
Return type

WindowWrapperT[]

abstract get_timestamp(event: faust.types.events.EventT = None) → float[source]
Return type

float

abstract keys() → KeysView[source]
Return type

KeysView[~KT]

abstract on_set_key(key: Any, value: Any) → None[source]
Return type

None

abstract on_del_key(key: Any) → None[source]
Return type

None

abstract as_ansitable(**kwargs) → str[source]
Return type

str

property get_relative_timestamp
Return type

Optional[Callable[[Optional[EventT[]]], Union[float, datetime]]]

faust.types.topics
class faust.types.topics.TopicT(app: faust.types.topics._AppT, *, topics: Sequence[str] = None, pattern: Union[str, Pattern[~AnyStr]] = None, key_type: faust.types.topics._ModelArg = None, value_type: faust.types.topics._ModelArg = None, is_iterator: bool = False, partitions: int = None, retention: Union[datetime.timedelta, float, str] = None, compacting: bool = None, deleting: bool = None, replicas: int = None, acks: bool = True, internal: bool = False, config: Mapping[str, Any] = None, queue: mode.utils.queues.ThrowableQueue = None, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, maxsize: int = None, root: faust.types.channels.ChannelT = None, active_partitions: Set[faust.types.tuples.TP] = None, allow_empty: bool = False, loop: asyncio.events.AbstractEventLoop = None) → None[source]
topics = None

Iterable/Sequence of topic names to subscribe to.

retention = None

expiry time in seconds for messages in the topic.

Type

Topic retention setting

compacting = None

Flag that when enabled means the topic can be “compacted”: if the topic is a log of key/value pairs, the broker can delete old values for the same key.

replicas = None

Number of replicas for topic.

config = None

Additional configuration as a mapping.

acks = None

Enable acks for this topic.

internal = None

it’s owned by us and we are allowed to create or delete the topic as necessary.

Type

Mark topic as internal

abstract property pattern

or instead of topics, a regular expression used to match topics we want to subscribe to. :rtype: Optional[Pattern[AnyStr]]

abstract property partitions
Return type

Optional[int]

abstract derive(**kwargs) → faust.types.channels.ChannelT[source]
Return type

ChannelT[]

abstract derive_topic(*, topics: Sequence[str] = None, key_type: faust.types.topics._ModelArg = None, value_type: faust.types.topics._ModelArg = None, partitions: int = None, retention: Union[datetime.timedelta, float, str] = None, compacting: bool = None, deleting: bool = None, internal: bool = False, config: Mapping[str, Any] = None, prefix: str = '', suffix: str = '', **kwargs) → faust.types.topics.TopicT[source]
Return type

TopicT[]

faust.types.transports
faust.types.transports.ConsumerCallback

alias of typing.Callable

faust.types.transports.TPorTopicSet

alias of typing.AbstractSet

faust.types.transports.PartitionsRevokedCallback

alias of typing.Callable

faust.types.transports.PartitionsAssignedCallback

alias of typing.Callable

faust.types.transports.PartitionerT

alias of typing.Callable

class faust.types.transports.ProducerT(transport: faust.types.transports.TransportT, loop: asyncio.events.AbstractEventLoop = None, **kwargs) → None[source]
transport = None

The transport that created this Producer.

abstract key_partition(topic: str, key: bytes) → faust.types.tuples.TP[source]
Return type

TP

abstract supports_headers() → bool[source]
Return type

bool

class faust.types.transports.TransactionManagerT(transport: faust.types.transports.TransportT, loop: asyncio.events.AbstractEventLoop = None, *, consumer: faust.types.transports.ConsumerT, producer: faust.types.transports.ProducerT, **kwargs) → None[source]
class faust.types.transports.ConsumerT(transport: faust.types.transports.TransportT, callback: Callable[faust.types.tuples.Message, Awaitable], on_partitions_revoked: Callable[Set[faust.types.tuples.TP], Awaitable[None]], on_partitions_assigned: Callable[Set[faust.types.tuples.TP], Awaitable[None]], *, commit_interval: float = None, loop: asyncio.events.AbstractEventLoop = None, **kwargs) → None[source]
transport = None

The transport that created this Consumer.

commit_interval = None

How often we commit topic offsets. See broker_commit_interval.

randomly_assigned_topics = None

Set of topic names that are considered “randomly assigned”. This means we don’t crash if it’s not part of our assignment. Used by e.g. the leader assignor service.

abstract track_message(message: faust.types.tuples.Message) → None[source]
Return type

None

abstract ack(message: faust.types.tuples.Message) → bool[source]
Return type

bool

abstract assignment() → Set[faust.types.tuples.TP][source]
Return type

Set[TP]

abstract highwater(tp: faust.types.tuples.TP) → int[source]
Return type

int

abstract stop_flow() → None[source]
Return type

None

abstract resume_flow() → None[source]
Return type

None

abstract pause_partitions(tps: Iterable[faust.types.tuples.TP]) → None[source]
Return type

None

abstract resume_partitions(tps: Iterable[faust.types.tuples.TP]) → None[source]
Return type

None

abstract topic_partitions(topic: str) → Optional[int][source]
Return type

Optional[int]

abstract key_partition(topic: str, key: Optional[bytes], partition: int = None) → Optional[int][source]
Return type

Optional[int]

abstract close() → None[source]
Return type

None

abstract property unacked
Return type

Set[Message]

class faust.types.transports.ConductorT(app: faust.types.transports._AppT, **kwargs) → None[source]
abstract acks_enabled_for(topic: str) → bool[source]
Return type

bool

class faust.types.transports.TransportT(url: List[yarl.URL], app: faust.types.transports._AppT, loop: asyncio.events.AbstractEventLoop = None) → None[source]
Consumer = None

The Consumer class used for this type of transport.

Producer = None

The Producer class used for this type of transport.

TransactionManager = None

The TransactionManager class used for managing multiple transactions.

Conductor = None

The Conductor class used to delegate messages from Consumer to streams.

Fetcher = None

The Fetcher service used for this type of transport.

app = None

The faust.App that created this transport.

url = None

//localhost).

Type

The URL to use for this transport (e.g. kafka

driver_version = None

String identifying the underlying driver used for this transport. E.g. for aiokafka this could be aiokafka 0.4.1.

abstract create_consumer(callback: Callable[faust.types.tuples.Message, Awaitable], **kwargs) → faust.types.transports.ConsumerT[source]
Return type

ConsumerT[]

abstract create_producer(**kwargs) → faust.types.transports.ProducerT[source]
Return type

ProducerT[]

abstract create_transaction_manager(consumer: faust.types.transports.ConsumerT, producer: faust.types.transports.ProducerT, **kwargs) → faust.types.transports.TransactionManagerT[source]
Return type

TransactionManagerT[]

abstract create_conductor(**kwargs) → faust.types.transports.ConductorT[source]
Return type

ConductorT[]

faust.types.tuples
class faust.types.tuples.TP(*args, **kwargs)[source]
property topic

Alias for field number 0

property partition

Alias for field number 1

class faust.types.tuples.RecordMetadata(*args, **kwargs)[source]
property topic

Alias for field number 0

property partition

Alias for field number 1

property topic_partition

Alias for field number 2

property offset

Alias for field number 3

property timestamp

Alias for field number 4

property timestamp_type

Alias for field number 5

class faust.types.tuples.PendingMessage(*args, **kwargs)[source]
property channel

Alias for field number 0

property key

Alias for field number 1

property value

Alias for field number 2

property partition

Alias for field number 3

property timestamp

Alias for field number 4

property headers

Alias for field number 5

property key_serializer

Alias for field number 6

property value_serializer

Alias for field number 7

property callback

Alias for field number 8

property topic

Alias for field number 9

property offset

Alias for field number 10

class faust.types.tuples.FutureMessage(message: faust.types.tuples.PendingMessage) → None[source]
set_result(result: faust.types.tuples.RecordMetadata) → None[source]

Mark the future done and set its result.

If the future is already done when this method is called, raises InvalidStateError.

Return type

None

class faust.types.tuples.Message(topic: str, partition: int, offset: int, timestamp: float, timestamp_type: int, headers: Union[List[Tuple[str, bytes]], Mapping[str, bytes], None], key: Optional[bytes], value: Optional[bytes], checksum: Optional[bytes], serialized_key_size: int = None, serialized_value_size: int = None, tp: faust.types.tuples.TP = None, time_in: float = None, time_out: float = None, time_total: float = None) → None[source]
use_tracking = False
topic
partition
offset
timestamp
timestamp_type
headers
key
value
checksum
serialized_key_size
serialized_value_size
acked
refcount
tp
tracked
time_in

Monotonic timestamp of when the consumer received this message.

time_out

Monotonic timestamp of when the consumer acknowledged this message.

time_total

Total processing time (in seconds), or None if the event is still processing.

ack(consumer: faust.types.tuples._ConsumerT, n: int = 1) → bool[source]
Return type

bool

on_final_ack(consumer: faust.types.tuples._ConsumerT) → bool[source]
Return type

bool

incref(n: int = 1) → None[source]
Return type

None

decref(n: int = 1) → int[source]
Return type

int

classmethod from_message(message: Any, tp: faust.types.tuples.TP) → faust.types.tuples.Message[source]
Return type

Message

span
class faust.types.tuples.ConsumerMessage(topic: str, partition: int, offset: int, timestamp: float, timestamp_type: int, headers: Union[List[Tuple[str, bytes]], Mapping[str, bytes], None], key: Optional[bytes], value: Optional[bytes], checksum: Optional[bytes], serialized_key_size: int = None, serialized_value_size: int = None, tp: faust.types.tuples.TP = None, time_in: float = None, time_out: float = None, time_total: float = None) → None[source]

Message type used by Kafka Consumer.

use_tracking = True
on_final_ack(consumer: faust.types.tuples._ConsumerT) → bool[source]
Return type

bool

acked
checksum
headers
key
offset
partition
refcount
serialized_key_size
serialized_value_size
span
time_in
time_out
time_total
timestamp
timestamp_type
topic
tp
tracked
value
faust.types.tuples.tp_set_to_map(tps: Set[faust.types.tuples.TP]) → MutableMapping[str, Set[faust.types.tuples.TP]][source]
Return type

MutableMapping[str, Set[TP]]

faust.types.tuples.MessageSentCallback

alias of typing.Callable

faust.types.web
class faust.types.web.Request[source]
class faust.types.web.Response[source]
class faust.types.web.Web[source]
class faust.types.web.View[source]
faust.types.web.ViewHandlerMethod

alias of typing.Callable

faust.types.web.ViewDecorator

alias of typing.Callable

class faust.types.web.ResourceOptions(*args, **kwargs)[source]

CORS Options for specific route, or defaults.

property allow_credentials

Alias for field number 0

property expose_headers

Alias for field number 1

property allow_headers

Alias for field number 2

property max_age

Alias for field number 3

property allow_methods

Alias for field number 4

class faust.types.web.CacheBackendT(app: faust.types.web._AppT, url: Union[yarl.URL, str] = 'memory://', **kwargs) → None[source]
class faust.types.web.CacheT(timeout: Union[datetime.timedelta, float, str] = None, key_prefix: str = None, backend: Union[Type[faust.types.web.CacheBackendT], str] = None, **kwargs) → None[source]
abstract view(timeout: Union[datetime.timedelta, float, str] = None, include_headers: bool = False, key_prefix: str = None, **kwargs) → Callable[Callable, Callable][source]
Return type

Callable[[Callable], Callable]

class faust.types.web.BlueprintT(*args, **kwargs)[source]
abstract cache(timeout: Union[datetime.timedelta, float, str] = None, include_headers: bool = False, key_prefix: str = None, backend: Union[Type[faust.types.web.CacheBackendT], str] = None) → faust.types.web.CacheT[source]
Return type

CacheT

abstract route(uri: str, *, name: Optional[str] = None, base: Type[faust.types.web.View] = <class 'faust.types.web.View'>) → Callable[Union[Type[faust.types.web.View], Callable[[faust.types.web.View, faust.types.web.Request], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]], Callable[[faust.types.web.View, faust.types.web.Request, Any, Any], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]]], Union[Type[faust.types.web.View], Callable[[faust.types.web.View, faust.types.web.Request], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]], Callable[[faust.types.web.View, faust.types.web.Request, Any, Any], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]]]][source]
Return type

Callable[[Union[Type[View], Callable[[View, Request], Union[Coroutine[Any, Any, Response], Awaitable[Response]]], Callable[[View, Request, Any, Any], Union[Coroutine[Any, Any, Response], Awaitable[Response]]]]], Union[Type[View], Callable[[View, Request], Union[Coroutine[Any, Any, Response], Awaitable[Response]]], Callable[[View, Request, Any, Any], Union[Coroutine[Any, Any, Response], Awaitable[Response]]]]]

abstract static(uri: str, file_or_directory: Union[str, pathlib.Path], *, name: Optional[str] = None) → None[source]
Return type

None

abstract register(app: faust.types.web._AppT, *, url_prefix: Optional[str] = None) → None[source]

Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

Return type

None

abstract init_webserver(web: faust.types.web.Web) → None[source]
Return type

None

abstract on_webserver_init(web: faust.types.web.Web) → None[source]
Return type

None

faust.types.web.HttpClientT

alias of aiohttp.client.ClientSession

faust.types.windows

Types related to windowing.

faust.types.windows.WindowRange

alias of typing.Tuple

class faust.types.windows.WindowT(*args, **kwargs)[source]

Type class for windows.

expires = None
tz = None
abstract ranges(timestamp: float) → List[Tuple[float, float]][source]
Return type

List[Tuple[float, float]]

abstract stale(timestamp: float, latest_timestamp: float) → bool[source]
Return type

bool

abstract current(timestamp: float) → Tuple[float, float][source]
Return type

Tuple[float, float]

abstract earliest(timestamp: float) → Tuple[float, float][source]
Return type

Tuple[float, float]

abstract delta(timestamp: float, d: Union[datetime.timedelta, float, str]) → Tuple[float, float][source]
Return type

Tuple[float, float]

Utils

faust.utils.codegen

Utilities for generating code at runtime.

faust.utils.codegen.Function(name: str, args: List[str], body: List[str], *, globals: Dict[str, Any] = None, locals: Dict[str, Any] = None, return_type: Any = <object object>, argsep: str = ', ') → Callable[source]

Generate a function from Python.

Return type

Callable

faust.utils.codegen.Method(name: str, args: List[str], body: List[str], **kwargs) → Callable[source]

Generate Python method.

Return type

Callable

faust.utils.codegen.InitMethod(args: List[str], body: List[str], **kwargs) → Callable[None][source]

Generate __init__ method.

Return type

Callable[[], None]

faust.utils.codegen.HashMethod(attrs: List[str], **kwargs) → Callable[None][source]

Generate __hash__ method.

Return type

Callable[[], None]

faust.utils.codegen.EqMethod(fields: List[str], **kwargs) → Callable[None][source]

Generate __eq__ method.

Return type

Callable[[], None]

faust.utils.codegen.NeMethod(fields: List[str], **kwargs) → Callable[None][source]

Generate __ne__ method.

Return type

Callable[[], None]

faust.utils.codegen.GeMethod(fields: List[str], **kwargs) → Callable[None][source]

Generate __ge__ method.

Return type

Callable[[], None]

faust.utils.codegen.GtMethod(fields: List[str], **kwargs) → Callable[None][source]

Generate __gt__ method.

Return type

Callable[[], None]

faust.utils.codegen.LeMethod(fields: List[str], **kwargs) → Callable[None][source]

Generate __le__ method.

Return type

Callable[[], None]

faust.utils.codegen.LtMethod(fields: List[str], **kwargs) → Callable[None][source]

Generate __lt__ method.

Return type

Callable[[], None]

faust.utils.codegen.CompareMethod(name: str, op: str, fields: List[str], **kwargs) → Callable[None][source]

Generate object comparison method.

Excellent for __eq__, __le__, etc.

Examples

The example:

CompareMethod(
    name='__eq__',
    op='==',
    fields=['x', 'y'],
)

Generates a method like this:

def __eq__(self, other):
   if other.__class__ is self.__class__:
        return (self.x,self.y) == (other.x,other.y)
    return NotImplemented
Return type

Callable[[], None]

faust.utils.cron

Crontab Utilities.

faust.utils.cron.secs_for_next(cron_format: str, tz: datetime.tzinfo = None) → float[source]

Return seconds until next execution given Crontab style format.

Return type

float

faust.utils.functional

Functional utilities.

faust.utils.functional.consecutive_numbers(it: Iterable[int]) → Iterator[Sequence[int]][source]

Find runs of consecutive numbers.

Notes

See https://docs.python.org/2.6/library/itertools.html#examples

Return type

Iterator[Sequence[int]]

faust.utils.functional.deque_prune(l: Deque[T], max: int = None) → Optional[T][source]

Prune oldest element in deque if size exceeds max.

Return type

Optional[~T]

faust.utils.functional.deque_pushpopmax(l: Deque[T], item: T, max: int = None) → Optional[T][source]

Append to deque and remove oldest element if size exceeds max.

Return type

Optional[~T]

faust.utils.iso8601

Parsing ISO-8601 string and converting to datetime.

faust.utils.iso8601.parse(datetime_string: str) → datetime.datetime[source]

Parse and convert ISO 8601 string into a datetime object.

Return type

datetime

faust.utils.json

JSON utilities.

faust.utils.json.str_to_decimal(s: str, maxlen: int = 1000) → Optional[decimal.Decimal][source]

Convert string to Decimal.

Parameters
  • s (str) – Number to convert.

  • maxlen (int) – Max length of string. Default is 100.

Raises

ValueError – if length exceeds maximum length, or if value is not a valid number (e.g. Inf, NaN or sNaN).

Return type

Optional[Decimal]

Returns

Converted number.

Return type

Decimal

class faust.utils.json.JSONEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)[source]

Faust customized json.JSONEncoder.

Our version supports additional types like UUID, and importantly includes microsecond information in datetimes.

default(o: Any, *, callback: Callable[Any, Any] = <function on_default>) → Any[source]

Try to convert non-built-in json type to json.

Return type

Any

faust.utils.json.dumps(obj: Any, json_dumps: Callable = <function dumps>, cls: Type[faust.utils.json.JSONEncoder] = <class 'faust.utils.json.JSONEncoder'>, **kwargs) → str[source]

Serialize to json. See json.dumps().

Return type

str

faust.utils.json.loads(s: str, json_loads: Callable = <function loads>, **kwargs) → Any[source]

Deserialize json string. See json.loads().

Return type

Any

faust.utils.platforms

Platform/OS utilities.

faust.utils.platforms.max_open_files() → Optional[int][source]

Return max number of open files, or None.

Return type

Optional[int]

faust.utils.tracing

OpenTracing utilities.

faust.utils.tracing.current_span() → Optional[opentracing.span.Span][source]

Get the current span for this context (if any).

Return type

Optional[Span]

faust.utils.tracing.set_current_span(span: opentracing.span.Span) → None[source]

Set the current span for the current context.

Return type

None

faust.utils.tracing.noop_span() → opentracing.span.Span[source]

Return a span that does nothing when traced.

Return type

Span

faust.utils.tracing.finish_span(span: Optional[opentracing.span.Span], *, error: BaseException = None) → None[source]

Finish span, and optionally set error tag.

Return type

None

faust.utils.tracing.operation_name_from_fun(fun: Any) → str[source]

Generate opentracing name from function.

Return type

str

faust.utils.tracing.traced_from_parent_span(parent_span: opentracing.span.Span = None, **extra_context) → Callable[source]

Decorate function to be traced from parent span.

Return type

Callable

faust.utils.tracing.call_with_trace(span: opentracing.span.Span, fun: Callable, callback: Optional[Tuple[Callable, Tuple[Any, ...]]], *args, **kwargs) → Any[source]

Call function and trace it from parent span.

Return type

Any

faust.utils.urls

URL utilities - Working with URLs.

faust.utils.urls.urllist(arg: Union[yarl.URL, str, List[str], List[yarl.URL]], *, default_scheme: str = None) → List[yarl.URL][source]

Create list of URLs.

You can pass in a comma-separated string, or an actual list and this will convert that into a list of yarl.URL objects.

Return type

List[URL]

faust.utils.venusian

Venusian (see venusian).

We define our own interface so we don’t have to specify the callback argument.

faust.utils.venusian.attach(fun: Callable, category: str, *, callback: Callable[[venusian.Scanner, str, Any], None] = None, **kwargs) → None[source]

Shortcut for venusian.attach().

This shortcut makes the callback argument optional.

Return type

None

class faust.utils.venusian.Scanner(**kw)[source]
scan(package, categories=None, onerror=None, ignore=None)[source]

Scan a Python package and any of its subpackages. All top-level objects will be considered; those marked with venusian callback attributes related to category will be processed.

The package argument should be a reference to a Python package or module object.

The categories argument should be sequence of Venusian callback categories (each category usually a string) or the special value None which means all Venusian callback categories. The default is None.

The onerror argument should either be None or a callback function which behaves the same way as the onerror callback function described in http://docs.python.org/library/pkgutil.html#pkgutil.walk_packages . By default, during a scan, Venusian will propagate all errors that happen during its code importing process, including ImportError. If you use a custom onerror callback, you can change this behavior.

Here’s an example onerror callback that ignores ImportError:

import sys
def onerror(name):
    if not issubclass(sys.exc_info()[0], ImportError):
        raise # reraise the last exception

The name passed to onerror is the module or package dotted name that could not be imported due to an exception.

New in version 1.0: the onerror callback

The ignore argument allows you to ignore certain modules, packages, or global objects during a scan. It should be a sequence containing strings and/or callables that will be used to match against the full dotted name of each object encountered during a scan. The sequence can contain any of these three types of objects:

  • A string representing a full dotted name. To name an object by dotted name, use a string representing the full dotted name. For example, if you want to ignore the my.package package and any of its subobjects or subpackages during the scan, pass ignore=['my.package'].

  • A string representing a relative dotted name. To name an object relative to the package passed to this method, use a string beginning with a dot. For example, if the package you’ve passed is imported as my.package, and you pass ignore=['.mymodule'], the my.package.mymodule mymodule and any of its subobjects or subpackages will be omitted during scan processing.

  • A callable that accepts a full dotted name string of an object as its single positional argument and returns True or False. For example, if you want to skip all packages, modules, and global objects with a full dotted path that ends with the word “tests”, you can use ignore=[re.compile('tests$').search]. If the callable returns True (or anything else truthy), the object is ignored, if it returns False (or anything else falsy) the object is not ignored. Note that unlike string matches, ignores that use a callable don’t cause submodules and subobjects of a module or package represented by a dotted name to also be ignored, they match individual objects found during a scan, including packages, modules, and global objects.

You can mix and match the three types of strings in the list. For example, if the package being scanned is my, ignore=['my.package', '.someothermodule', re.compile('tests$').search] would cause my.package (and all its submodules and subobjects) to be ignored, my.someothermodule to be ignored, and any modules, packages, or global objects found during the scan that have a full dotted name that ends with the word tests to be ignored.

Note that packages and modules matched by any ignore in the list will not be imported, and their top-level code will not be run as a result.

A string or callable alone can also be passed as ignore without a surrounding list.

New in version 1.0a3: the ignore argument

Terminal (TTY) Utilities
faust.utils.terminal

Terminal utilities.

class faust.utils.terminal.Spinner(file: IO = <_io.TextIOWrapper name='<stderr>' mode='w' encoding='UTF-8'>) → None[source]

Progress bar spinner.

bell = '\x08'
sprites = ['🌑 ', '🌒 ', '🌓 ', '🌔 ', '🌕 ', '🌖 ', '🌗 ', '🌘 ']
cursor_hide = '\x1b[?25l'
cursor_show = '\x1b[?25h'
hide_cursor = True
stopped = False
update() → None[source]

Draw spinner, single iteration.

Return type

None

stop() → None[source]

Stop spinner from being emitted.

Return type

None

reset() → None[source]

Reset state or allow restart.

Return type

None

write(s: str) → None[source]

Write spinner character to terminal.

Return type

None

begin() → None[source]

Prepare terminal for spinner starting.

Return type

None

finish() → None[source]

Finish spinner and reset terminal.

Return type

None

class faust.utils.terminal.SpinnerHandler(spinner: faust.utils.terminal.spinners.Spinner, **kwargs) → None[source]

A logger handler that iterates our progress spinner for each log.

emit(_record: logging.LogRecord) → None[source]

Emit the next spinner character.

Return type

None

faust.utils.terminal.Table

alias of terminaltables.base_table.BaseTable

faust.utils.terminal.TableDataT

alias of typing.Sequence

faust.utils.terminal.isatty(fh: IO) → bool[source]

Return True if fh has a controlling terminal.

Notes

Use with e.g. sys.stdin.

Return type

bool

faust.utils.terminal.logtable(data: Sequence[Sequence[str]], *, title: str, target: IO = None, tty: bool = None, headers: Sequence[str] = None, **kwargs) → str[source]

Prepare table for logging.

Will use ANSI escape codes if the log file is a tty.

Return type

str

faust.utils.terminal.table(data: Sequence[Sequence[str]], *, title: str, target: IO = None, tty: bool = None, **kwargs) → terminaltables.base_table.BaseTable[source]

Create suitable terminaltables table for target.

Parameters
  • data (Sequence[Sequence[str]]) – Table data.

  • target (IO) – Target should be the destination output file for your table, and defaults to sys.stdout. ANSI codes will be used if the target has a controlling terminal, but not otherwise, which is why it’s important to pass the correct output file.

Return type

BaseTable

faust.utils.terminal.spinners

Terminal progress bar spinners.

class faust.utils.terminal.spinners.Spinner(file: IO = <_io.TextIOWrapper name='<stderr>' mode='w' encoding='UTF-8'>) → None[source]

Progress bar spinner.

bell = '\x08'
sprites = ['🌑 ', '🌒 ', '🌓 ', '🌔 ', '🌕 ', '🌖 ', '🌗 ', '🌘 ']
cursor_hide = '\x1b[?25l'
cursor_show = '\x1b[?25h'
hide_cursor = True
stopped = False
update() → None[source]

Draw spinner, single iteration.

Return type

None

stop() → None[source]

Stop spinner from being emitted.

Return type

None

reset() → None[source]

Reset state or allow restart.

Return type

None

write(s: str) → None[source]

Write spinner character to terminal.

Return type

None

begin() → None[source]

Prepare terminal for spinner starting.

Return type

None

finish() → None[source]

Finish spinner and reset terminal.

Return type

None

class faust.utils.terminal.spinners.SpinnerHandler(spinner: faust.utils.terminal.spinners.Spinner, **kwargs) → None[source]

A logger handler that iterates our progress spinner for each log.

emit(_record: logging.LogRecord) → None[source]

Emit the next spinner character.

Return type

None

faust.utils.terminal.tables

Using terminaltables to draw ANSI tables.

faust.utils.terminal.tables.TableDataT

alias of typing.Sequence

faust.utils.terminal.tables.table(data: Sequence[Sequence[str]], *, title: str, target: IO = None, tty: bool = None, **kwargs) → terminaltables.base_table.BaseTable[source]

Create suitable terminaltables table for target.

Parameters
  • data (Sequence[Sequence[str]]) – Table data.

  • target (IO) – Target should be the destination output file for your table, and defaults to sys.stdout. ANSI codes will be used if the target has a controlling terminal, but not otherwise, which is why it’s important to pass the correct output file.

Return type

BaseTable

faust.utils.terminal.tables.logtable(data: Sequence[Sequence[str]], *, title: str, target: IO = None, tty: bool = None, headers: Sequence[str] = None, **kwargs) → str[source]

Prepare table for logging.

Will use ANSI escape codes if the log file is a tty.

Return type

str

faust.utils.terminal.tables.Table

alias of terminaltables.base_table.BaseTable

Web

faust.web.apps.graph

Web endpoint showing graph of running mode services.

class faust.web.apps.graph.Graph(app: faust.types.app.AppT, web: faust.web.base.Web) → None[source]

Render image from graph of running services.

faust.web.apps.router

HTTP endpoint showing partition routing destinations.

class faust.web.apps.router.TableList(app: faust.types.app.AppT, web: faust.web.base.Web) → None[source]

List routes for all tables.

class faust.web.apps.router.TableDetail(app: faust.types.app.AppT, web: faust.web.base.Web) → None[source]

List route for specific table.

class faust.web.apps.router.TableKeyDetail(app: faust.types.app.AppT, web: faust.web.base.Web) → None[source]

List information about key.

faust.web.apps.stats

HTTP endpoint showing statistics from the Faust monitor.

class faust.web.apps.stats.Stats(app: faust.types.app.AppT, web: faust.web.base.Web) → None[source]

Monitor statistics.

class faust.web.apps.stats.Assignment(app: faust.types.app.AppT, web: faust.web.base.Web) → None[source]

Cluster assignment information.

faust.web.base

Base interface for Web server and views.

class faust.web.base.Response[source]

Web server response and status.

abstract property status

Return the response status code. :rtype: int

abstract property body

Return the response body as bytes. :rtype: bytes

abstract property headers

Return mapping of response HTTP headers. :rtype: MutableMapping[~KT, ~VT]

abstract property content_length

Return the size of the response body. :rtype: Optional[int]

abstract property content_type

Return the response content type. :rtype: str

abstract property charset

Return the response character set. :rtype: Optional[str]

abstract property chunked

Return True if response is chunked. :rtype: bool

abstract property compression

Return True if the response body is compressed. :rtype: bool

abstract property keep_alive

Return True if HTTP keep-alive enabled. :rtype: Optional[bool]

abstract property body_length

Size of HTTP response body. :rtype: int

class faust.web.base.BlueprintManager(initial: Iterable[Tuple[str, Union[_T, str]]] = None) → None[source]

Manager of all blueprints.

add(prefix: str, blueprint: Union[_T, str]) → None[source]

Register blueprint with this app.

Return type

None

apply(web: faust.web.base.Web) → None[source]

Apply all blueprints.

Return type

None

class faust.web.base.Web(app: faust.types.app.AppT, **kwargs) → None[source]

Web server and HTTP interface.

default_blueprints = [('/router', 'faust.web.apps.router:blueprint'), ('/table', 'faust.web.apps.tables.blueprint')]
production_blueprints = [('', 'faust.web.apps.production_index:blueprint')]
debug_blueprints = [('/graph', 'faust.web.apps.graph:blueprint'), ('', 'faust.web.apps.stats:blueprint')]
content_separator = b'\r\n\r\n'
header_separator = b'\r\n'
header_key_value_separator = b': '
abstract text(value: str, *, content_type: str = None, status: int = 200, reason: str = None, headers: MutableMapping = None) → faust.web.base.Response[source]

Create text response, using “text/plain” content-type.

Return type

Response

abstract html(value: str, *, content_type: str = None, status: int = 200, reason: str = None, headers: MutableMapping = None) → faust.web.base.Response[source]

Create HTML response from string, text/html content-type.

Return type

Response

abstract json(value: Any, *, content_type: str = None, status: int = 200, reason: str = None, headers: MutableMapping = None) → faust.web.base.Response[source]

Create new JSON response.

Accepts any JSON-serializable value and will automatically serialize it for you.

The content-type is set to “application/json”.

Return type

Response

abstract bytes(value: bytes, *, content_type: str = None, status: int = 200, reason: str = None, headers: MutableMapping = None) → faust.web.base.Response[source]

Create new bytes response - for binary data.

Return type

Response

abstract bytes_to_response(s: bytes) → faust.web.base.Response[source]

Deserialize HTTP response from byte string.

Return type

Response

abstract response_to_bytes(response: faust.web.base.Response) → bytes[source]

Serialize HTTP response into byte string.

Return type

bytes

abstract route(pattern: str, handler: Callable, cors_options: Mapping[str, faust.types.web.ResourceOptions] = None) → None[source]

Add route for handler.

Return type

None

abstract add_static(prefix: str, path: Union[pathlib.Path, str], **kwargs) → None[source]

Add static route.

Return type

None

add_view(view_cls: Type[faust.types.web.View], *, prefix: str = '', cors_options: Mapping[str, faust.types.web.ResourceOptions] = None) → faust.types.web.View[source]

Add route for view.

Return type

View

url_for(view_name: str, **kwargs) → str[source]

Get URL by view name.

If the provided view name has associated URL parameters, those need to be passed in as kwargs, or a TypeError will be raised.

Return type

str

init_server() → None[source]

Initialize and setup web server.

Return type

None

property url

Return the canonical URL to this worker (including port). :rtype: URL

logger = <Logger faust.web.base (WARNING)>
class faust.web.base.Request(*args, **kwargs)[source]

HTTP Request.

abstract can_read_body() → bool[source]

Return True if the request has a body.

Return type

bool

abstract property match_info

Return match info from URL route as a mapping. :rtype: Mapping[str, str]

abstract property query

Return HTTP query parameters as a mapping. :rtype: Mapping[str, str]

abstract property cookies

Return cookies as a mapping. :rtype: Mapping[str, Any]

faust.web.blueprints

Blueprints define reusable web apps.

They are lazy and need to be registered to an app to be activated:

from faust import web

blueprint = web.Blueprint('users')
cache = blueprint.cache(timeout=300.0)

@blueprint.route('/', name='list')
class UserListView(web.View):

    @cache.view()
    async def get(self, request: web.Request) -> web.Response:
        return web.json(...)

@blueprint.route('/{user_id}/', name='detail')
class UserDetailView(web.View):

    @cache.view(timeout=10.0)
    async def get(self,
                  request: web.Request,
                  user_id: str) -> web.Response:
        return web.json(...)

At this point the views are realized and can be used from Python code, but the cached get method handlers cannot be called yet.

To actually use the view from a web server, we need to register the blueprint to an app:

app = faust.App(
    'name',
    broker='kafka://',
    cache='redis://',
)

user_blueprint.register(app, url_prefix='/user/')

At this point the web server will have fully-realized views with actually cached method handlers.

The blueprint is registered with a prefix, so the URL for the UserListView is now /user/, and the URL for the UserDetailView is /user/{user_id}/.

Blueprints can be registered to multiple apps at the same time.

class faust.web.blueprints.Blueprint(name: str, *, url_prefix: Optional[str] = None) → None[source]

Define reusable web application.

view_name_separator = ':'
cache(timeout: Union[datetime.timedelta, float, str] = None, include_headers: bool = False, key_prefix: str = None, backend: Union[Type[faust.types.web.CacheBackendT], str] = None) → faust.types.web.CacheT[source]

Cache API.

Return type

CacheT

route(uri: str, *, name: Optional[str] = None, cors_options: Mapping[str, faust.types.web.ResourceOptions] = None, base: Type[faust.types.web.View] = <class 'faust.types.web.View'>) → Callable[Union[Type[faust.types.web.View], Callable[[faust.types.web.View, faust.types.web.Request], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]], Callable[[faust.types.web.View, faust.types.web.Request, Any, Any], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]]], Union[Type[faust.types.web.View], Callable[[faust.types.web.View, faust.types.web.Request], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]], Callable[[faust.types.web.View, faust.types.web.Request, Any, Any], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]]]][source]

Create route by decorating handler or view class.

Return type

Callable[[Union[Type[View], Callable[[View, Request], Union[Coroutine[Any, Any, Response], Awaitable[Response]]], Callable[[View, Request, Any, Any], Union[Coroutine[Any, Any, Response], Awaitable[Response]]]]], Union[Type[View], Callable[[View, Request], Union[Coroutine[Any, Any, Response], Awaitable[Response]]], Callable[[View, Request, Any, Any], Union[Coroutine[Any, Any, Response], Awaitable[Response]]]]]

static(uri: str, file_or_directory: Union[str, pathlib.Path], *, name: Optional[str] = None) → None[source]

Add static route.

Return type

None

register(app: faust.types.app.AppT, *, url_prefix: Optional[str] = None) → None[source]

Register blueprint with app.

Return type

None

init_webserver(web: faust.types.web.Web) → None[source]

Init blueprint for web server start.

Return type

None

on_webserver_init(web: faust.types.web.Web) → None[source]

Call when web server starts.

Return type

None

faust.web.cache

Caching.

class faust.web.cache.Cache(timeout: Union[datetime.timedelta, float, str] = None, include_headers: bool = False, key_prefix: str = None, backend: Union[Type[faust.types.web.CacheBackendT], str] = None, **kwargs) → None[source]

Cache interface.

ident = 'faustweb.cache.view'
view(timeout: Union[datetime.timedelta, float, str] = None, include_headers: bool = False, key_prefix: str = None, **kwargs) → Callable[Callable, Callable][source]

Decorate view to be cached.

Return type

Callable[[Callable], Callable]

can_cache_request(request: faust.types.web.Request) → bool[source]

Return True if we can cache this type of HTTP request.

Return type

bool

can_cache_response(request: faust.types.web.Request, response: faust.types.web.Response) → bool[source]

Return True for HTTP status codes we CAN cache.

Return type

bool

key_for_request(request: faust.types.web.Request, prefix: str = None, method: str = None, include_headers: bool = False) → str[source]

Return a cache key created from web request.

Return type

str

build_key(request: faust.types.web.Request, method: str, prefix: str, headers: Mapping[str, str]) → str[source]

Build cache key from web request and environment.

Return type

str

faust.web.cache.backends

Cache backend registry.

faust.web.cache.backends.by_name(name: Union[_T, str]) → _T
Return type

~_T

faust.web.cache.backends.by_url(url: Union[str, yarl.URL]) → _T

Get class associated with URL (scheme is used as alias key).

Return type

~_T

faust.web.cache.backends.base

Cache backend - base implementation.

class faust.web.cache.backends.base.CacheBackend(app: faust.types.app.AppT, url: Union[yarl.URL, str] = 'memory://', **kwargs) → None[source]

Backend for cache operations.

logger = <Logger faust.web.cache.backends.base (WARNING)>
Unavailable

alias of faust.web.cache.exceptions.CacheUnavailable

operational_errors = ()
invalidating_errors = ()
irrecoverable_errors = ()
faust.web.cache.backends.memory

In-memory cache backend.

class faust.web.cache.backends.memory.CacheStorage[source]

In-memory storage for cache.

get(key: KT) → Optional[VT][source]

Get value for key, or None if missing.

Return type

Optional[~VT]

last_set_ttl(key: KT) → Optional[float][source]

Return the last set TTL for key, or None if missing.

Return type

Optional[float]

expire(key: KT) → None[source]

Expire value for key immediately.

Return type

None

set(key: KT, value: VT) → None[source]

Set value for key.

Return type

None

setex(key: KT, timeout: float, value: VT) → None[source]

Set value & set timeout for key.

Return type

None

ttl(key: KT) → Optional[float][source]

Return the remaining TTL for key.

Return type

Optional[float]

delete(key: KT) → None[source]

Delete value for key.

Return type

None

clear() → None[source]

Clear all data.

Return type

None

class faust.web.cache.backends.memory.CacheBackend(app: faust.types.app.AppT, url: Union[yarl.URL, str] = 'memory://', **kwargs) → None[source]

In-memory backend for cache operations.

faust.web.cache.backends.redis

Redis cache backend.

class faust.web.cache.backends.redis.RedisScheme[source]

Types of Redis configurations.

SINGLE_NODE = 'redis'
CLUSTER = 'rediscluster'
class faust.web.cache.backends.redis.CacheBackend(app: faust.types.app.AppT, url: Union[yarl.URL, str], *, connect_timeout: float = None, stream_timeout: float = None, max_connections: int = None, max_connections_per_node: int = None, **kwargs) → None[source]

Backend for cache operations using Redis.

client[source]

Return Redis client instance.

faust.web.cache.cache

Cache interface.

class faust.web.cache.cache.Cache(timeout: Union[datetime.timedelta, float, str] = None, include_headers: bool = False, key_prefix: str = None, backend: Union[Type[faust.types.web.CacheBackendT], str] = None, **kwargs) → None[source]

Cache interface.

ident = 'faustweb.cache.view'
view(timeout: Union[datetime.timedelta, float, str] = None, include_headers: bool = False, key_prefix: str = None, **kwargs) → Callable[Callable, Callable][source]

Decorate view to be cached.

Return type

Callable[[Callable], Callable]

can_cache_request(request: faust.types.web.Request) → bool[source]

Return True if we can cache this type of HTTP request.

Return type

bool

can_cache_response(request: faust.types.web.Request, response: faust.types.web.Response) → bool[source]

Return True for HTTP status codes we CAN cache.

Return type

bool

key_for_request(request: faust.types.web.Request, prefix: str = None, method: str = None, include_headers: bool = False) → str[source]

Return a cache key created from web request.

Return type

str

build_key(request: faust.types.web.Request, method: str, prefix: str, headers: Mapping[str, str]) → str[source]

Build cache key from web request and environment.

Return type

str

faust.web.cache.cache.iri_to_uri(iri: str) → str[source]

Convert IRI to URI.

Return type

str

faust.web.cache.exceptions

Cache-related errors.

exception faust.web.cache.exceptions.CacheUnavailable[source]

The cache is currently unavailable.

faust.web.drivers

Web server driver registry.

faust.web.drivers.by_name(name: Union[_T, str]) → _T
Return type

~_T

faust.web.drivers.by_url(url: Union[str, yarl.URL]) → _T

Get class associated with URL (scheme is used as alias key).

Return type

~_T

faust.web.drivers.aiohttp

Web driver using aiohttp.

class faust.web.drivers.aiohttp.Web(app: faust.types.app.AppT, **kwargs) → None[source]

Web server and framework implementation using aiohttp.

driver_version = 'aiohttp=3.5.4'
handler_shutdown_timeout = 60.0
property cors

Return CORS config object. :rtype: CorsConfig

text(value: str, *, content_type: str = None, status: int = 200, reason: str = None, headers: MutableMapping = None) → faust.web.base.Response[source]

Create text response, using “text/plain” content-type.

Return type

Response

html(value: str, *, content_type: str = None, status: int = 200, reason: str = None, headers: MutableMapping = None) → faust.web.base.Response[source]

Create HTML response from string, text/html content-type.

Return type

Response

json(value: Any, *, content_type: str = None, status: int = 200, reason: str = None, headers: MutableMapping = None) → Any[source]

Create new JSON response.

Accepts any JSON-serializable value and will automatically serialize it for you.

The content-type is set to “application/json”.

Return type

Any

bytes(value: bytes, *, content_type: str = None, status: int = 200, reason: str = None, headers: MutableMapping = None) → faust.web.base.Response[source]

Create new bytes response - for binary data.

Return type

Response

route(pattern: str, handler: Callable, cors_options: Mapping[str, aiohttp_cors.resource_options.ResourceOptions] = None) → None[source]

Add route for web view or handler.

Return type

None

add_static(prefix: str, path: Union[pathlib.Path, str], **kwargs) → None[source]

Add route for static assets.

Return type

None

bytes_to_response(s: bytes) → faust.web.base.Response[source]

Deserialize byte string back into a response object.

Return type

Response

response_to_bytes(response: faust.web.base.Response) → bytes[source]

Convert response to serializable byte string.

The result is a byte string that can be deserialized using bytes_to_response().

Return type

bytes

logger = <Logger faust.web.drivers.aiohttp (WARNING)>
faust.web.exceptions

HTTP and related errors.

exception faust.web.exceptions.WebError(detail: str = None, *, code: int = None, **extra_context) → None[source]

Web related error.

Web related errors will have a status code, and a detail for the human readable error string.

It may also keep extra_context.

detail = 'Default not set on class'
code = None
exception faust.web.exceptions.ServerError(detail: str = None, *, code: int = None, **extra_context) → None[source]

Internal Server Error (500).

code = 500
detail = 'Internal server error.'
exception faust.web.exceptions.ValidationError(detail: str = None, *, code: int = None, **extra_context) → None[source]

Invalid input in POST data (400).

code = 400
detail = 'Invalid input.'
exception faust.web.exceptions.ParseError(detail: str = None, *, code: int = None, **extra_context) → None[source]

Malformed request (400).

code = 400
detail = 'Malformed request.'
exception faust.web.exceptions.AuthenticationFailed(detail: str = None, *, code: int = None, **extra_context) → None[source]

Incorrect authentication credentials (401).

code = 401
detail = 'Incorrect authentication credentials'
exception faust.web.exceptions.NotAuthenticated(detail: str = None, *, code: int = None, **extra_context) → None[source]

Authentication credentials were not provided (401).

code = 401
detail = 'Authentication credentials were not provided.'
exception faust.web.exceptions.PermissionDenied(detail: str = None, *, code: int = None, **extra_context) → None[source]

No permission to perform action (403).

code = 403
detail = 'You do not have permission to perform this action.'
exception faust.web.exceptions.NotFound(detail: str = None, *, code: int = None, **extra_context) → None[source]

Resource not found (404).

code = 404
detauil = 'Not found.'
exception faust.web.exceptions.MethodNotAllowed(detail: str = None, *, code: int = None, **extra_context) → None[source]

HTTP Method not allowed (405).

code = 405
detail = 'Method not allowed.'
exception faust.web.exceptions.NotAcceptable(detail: str = None, *, code: int = None, **extra_context) → None[source]

Not able to satisfy the request Accept header (406).

code = 406
detail = 'Could not satisfy the request Accept header.'
exception faust.web.exceptions.UnsupportedMediaType(detail: str = None, *, code: int = None, **extra_context) → None[source]

Request contains unsupported media type (415).

code = 415
detail = 'Unsupported media type in request.'
exception faust.web.exceptions.Throttled(detail: str = None, *, code: int = None, **extra_context) → None[source]

Client is sending too many requests to server (429).

code = 429
detail = 'Request was throttled.'
faust.web.views

Class-based views.

class faust.web.views.View(app: faust.types.app.AppT, web: faust.web.base.Web) → None[source]

Web view (HTTP endpoint).

exception ServerError(detail: str = None, *, code: int = None, **extra_context) → None

Internal Server Error (500).

code = 500
detail = 'Internal server error.'
exception ValidationError(detail: str = None, *, code: int = None, **extra_context) → None

Invalid input in POST data (400).

code = 400
detail = 'Invalid input.'
exception ParseError(detail: str = None, *, code: int = None, **extra_context) → None

Malformed request (400).

code = 400
detail = 'Malformed request.'
exception NotAuthenticated(detail: str = None, *, code: int = None, **extra_context) → None

Authentication credentials were not provided (401).

code = 401
detail = 'Authentication credentials were not provided.'
exception PermissionDenied(detail: str = None, *, code: int = None, **extra_context) → None

No permission to perform action (403).

code = 403
detail = 'You do not have permission to perform this action.'
exception NotFound(detail: str = None, *, code: int = None, **extra_context) → None

Resource not found (404).

code = 404
detauil = 'Not found.'
classmethod from_handler(fun: Union[Callable[[faust.types.web.View, faust.types.web.Request], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]], Callable[[faust.types.web.View, faust.types.web.Request, Any, Any], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]]]) → Type[faust.web.views.View][source]

Decorate async def handler function to create view.

Return type

Type[View]

path_for(view_name: str, **kwargs) → str[source]

Return the URL path for view by name.

Supports match keyword arguments.

Return type

str

url_for(view_name: str, _base_url: Union[str, yarl.URL] = None, **kwargs) → yarl.URL[source]

Return the canonical URL for view by name.

Supports match keyword arguments. Can take optional base name, which if not set will be the canonical URL of the app.

Return type

URL

text(value: str, *, content_type: str = None, status: int = 200, reason: str = None, headers: MutableMapping = None) → faust.web.base.Response[source]

Create text response, using “text/plain” content-type.

Return type

Response

html(value: str, *, content_type: str = None, status: int = 200, reason: str = None, headers: MutableMapping = None) → faust.web.base.Response[source]

Create HTML response from string, text/html content-type.

Return type

Response

json(value: Any, *, content_type: str = None, status: int = 200, reason: str = None, headers: MutableMapping = None) → faust.web.base.Response[source]

Create new JSON response.

Accepts any JSON-serializable value and will automatically serialize it for you.

The content-type is set to “application/json”.

Return type

Response

bytes(value: bytes, *, content_type: str = None, status: int = 200, reason: str = None, headers: MutableMapping = None) → faust.web.base.Response[source]

Create new bytes response - for binary data.

Return type

Response

bytes_to_response(s: bytes) → faust.web.base.Response[source]

Deserialize byte string back into a response object.

Return type

Response

response_to_bytes(response: faust.web.base.Response) → bytes[source]

Convert response to serializable byte string.

The result is a byte string that can be deserialized using bytes_to_response().

Return type

bytes

route(pattern: str, handler: Callable) → Any[source]

Create new route from pattern and handler.

Return type

Any

notfound(reason: str = 'Not Found', **kwargs) → faust.web.base.Response[source]

Create not found error response.

Deprecated: Use raise self.NotFound() instead.

Return type

Response

error(status: int, reason: str, **kwargs) → faust.web.base.Response[source]

Create error JSON response.

Return type

Response

faust.web.views.takes_model(Model: Type[faust.types.models.ModelT]) → Callable[Union[Callable[[faust.types.web.View, faust.types.web.Request], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]], Callable[[faust.types.web.View, faust.types.web.Request, Any, Any], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]]], Union[Callable[[faust.types.web.View, faust.types.web.Request], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]], Callable[[faust.types.web.View, faust.types.web.Request, Any, Any], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]]]][source]

Decorate view function to return model data.

Return type

Callable[[Union[Callable[[View, Request], Union[Coroutine[Any, Any, Response], Awaitable[Response]]], Callable[[View, Request, Any, Any], Union[Coroutine[Any, Any, Response], Awaitable[Response]]]]], Union[Callable[[View, Request], Union[Coroutine[Any, Any, Response], Awaitable[Response]]], Callable[[View, Request, Any, Any], Union[Coroutine[Any, Any, Response], Awaitable[Response]]]]]

faust.web.views.gives_model(Model: Type[faust.types.models.ModelT]) → Callable[Union[Callable[[faust.types.web.View, faust.types.web.Request], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]], Callable[[faust.types.web.View, faust.types.web.Request, Any, Any], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]]], Union[Callable[[faust.types.web.View, faust.types.web.Request], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]], Callable[[faust.types.web.View, faust.types.web.Request, Any, Any], Union[Coroutine[[Any, Any], faust.types.web.Response], Awaitable[faust.types.web.Response]]]]][source]

Decorate view function to automatically decode POST data.

The POST data is decoded using the model you specify.

Return type

Callable[[Union[Callable[[View, Request], Union[Coroutine[Any, Any, Response], Awaitable[Response]]], Callable[[View, Request, Any, Any], Union[Coroutine[Any, Any, Response], Awaitable[Response]]]]], Union[Callable[[View, Request], Union[Coroutine[Any, Any, Response], Awaitable[Response]]], Callable[[View, Request, Any, Any], Union[Coroutine[Any, Any, Response], Awaitable[Response]]]]]

CLI

faust.cli.agents

Program faust agents used to list agents.

class faust.cli.agents.agents(ctx: click.core.Context, *args, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, **kwargs) → None[source]

List agents.

title = 'Agents'
headers = ['name', 'topic', 'help']
sortkey = operator.attrgetter('name')
options = [<function option.<locals>.decorator>]
agents(*, local: bool = False) → Sequence[faust.types.agents.AgentT][source]

Convert list of agents to terminal table rows.

Return type

Sequence[AgentT[]]

agent_to_row(agent: faust.types.agents.AgentT) → Sequence[str][source]

Convert agent fields to terminal table row.

Return type

Sequence[str]

faust.cli.base

Command-line programs using click.

faust.cli.base.argument(*args, **kwargs) → Callable[Any, Any][source]

Create command-line argument.

SeeAlso:

click.argument()

Return type

Callable[[Any], Any]

faust.cli.base.option(*option_decls, show_default: bool = True, **kwargs) → Callable[Any, Any][source]

Create command-line option.

SeeAlso:

click.option()

Return type

Callable[[Any], Any]

faust.cli.base.find_app(app: str, *, symbol_by_name: Callable = <function symbol_by_name>, imp: Callable = <function import_from_cwd>, attr_name: str = 'app') → faust.types.app.AppT[source]

Find app by string like examples.simple.

Notes

This function uses import_from_cwd to temporarily add the current working directory to PYTHONPATH, such that when importing the app it will search the current working directory last.

You can think of it as temporarily running with the PYTHONPATH set like this:

You can disable this with the imp keyword argument, for example passing imp=importlib.import_module.

Examples

>>> # If providing the name of a module, it will attempt
>>> # to find an attribute name (.app) in that module.
>>> # Example below is the same as importing::
>>> #    from examples.simple import app
>>> find_app('examples.simple')
>>> # If you want an attribute other than .app you can
>>> # use : to separate module and attribute.
>>> # Examples below is the same as importing::
>>> #     from examples.simple import my_app
>>> find_app('examples.simple:my_app')
>>> # You can also use period for the module/attribute separator
>>> find_app('examples.simple.my_app')
Return type

AppT[]

class faust.cli.base.Command(ctx: click.core.Context, *args, **kwargs) → None[source]

Base class for subcommands.

exception UsageError(message, ctx=None)

An internal exception that signals a usage error. This typically aborts any further handling.

Parameters
  • message – the error message to display.

  • ctx – optionally the context that caused this error. Click will fill in the context automatically in some situations.

exit_code = 2
show(file=None)
abstract = True
daemon = False
redirect_stdouts = None
redirect_stdouts_level = None
builtin_options = [<function version_option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>]
options = None
classmethod as_click_command() → Callable[source]

Convert command into click command.

Return type

Callable

classmethod parse(argv: Sequence[str]) → Mapping[source]

Parse command-line arguments in argv and return mapping.

Return type

Mapping[~KT, +VT_co]

prog_name = ''
run_using_worker(*args, **kwargs) → NoReturn[source]

Execute command using faust.Worker.

Return type

_NoReturn

on_worker_created(worker: mode.worker.Worker) → None[source]

Call when creating faust.Worker to execute this command.

Return type

None

as_service(loop: asyncio.events.AbstractEventLoop, *args, **kwargs) → mode.services.Service[source]

Wrap command in a mode.Service object.

Return type

Service[]

worker_for_service(service: mode.types.services.ServiceT, loop: asyncio.events.AbstractEventLoop = None) → mode.worker.Worker[source]

Create faust.Worker instance for this command.

Return type

Worker[]

tabulate(data: Sequence[Sequence[str]], headers: Sequence[str] = None, wrap_last_row: bool = True, title: str = '', title_color: str = 'blue', **kwargs) → str[source]

Create an ANSI representation of a table of two-row tuples.

See also

Keyword arguments are forwarded to terminaltables.SingleTable

Note

If the --json option is enabled this returns json instead.

Return type

str

table(data: Sequence[Sequence[str]], title: str = '', **kwargs) → terminaltables.base_table.BaseTable[source]

Format table data as ANSI/ASCII table.

Return type

BaseTable

color(name: str, text: str) → str[source]

Return text having a certain color by name.

Examples::
>>> self.color('blue', 'text_to_color')
>>> self.color('hiblue', text_to_color')

See also

colorclass: for a list of available colors.

Return type

str

dark(text: str) → str[source]

Return cursor text.

Return type

str

bold(text: str) → str[source]

Return text in bold.

Return type

str

bold_tail(text: str, *, sep: str = '.') → str[source]

Put bold emphasis on the last part of a foo.bar.baz string.

Return type

str

say(message: str, file: IO = None, err: IO = None, **kwargs) → None[source]

Print something to stdout (or use file=stderr kwarg).

Note

Does not do anything if the --quiet option is enabled.

Return type

None

carp(s: Any, **kwargs) → None[source]

Print something to stdout (or use file=stderr kwargs).

Note

Does not do anything if the --debug option is enabled.

Return type

None

dumps(obj: Any) → str[source]

Serialize object using JSON.

Return type

str

property loglevel

Return the log level used for this command. :rtype: str

property blocking_timeout

Return the blocking timeout used for this command. :rtype: float

property console_port

Return the aiomonitor console port. :rtype: int

class faust.cli.base.AppCommand(ctx: click.core.Context, *args, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, **kwargs) → None[source]

Command that takes -A app as argument.

abstract = False
require_app = True
value_serialier = None

The codec used to serialize values. Taken from instance parameters or value_serializer.

classmethod from_handler(*options, **kwargs) → Callable[Callable, Type[faust.cli.base.AppCommand]][source]

Decorate async def command to create command class.

Return type

Callable[[Callable], Type[AppCommand]]

key_serializer = None

The codec used to serialize keys. Taken from instance parameters or key_serializer.

to_key(typ: Optional[str], key: str) → Any[source]

Convert command-line argument string to model (key).

Parameters
  • typ (Optional[str]) – The name of the model to create.

  • key (str) – The string json of the data to populate it with.

Notes

Uses key_serializer to set the codec for the key (e.g. "json"), as set by the --key-serializer option.

Return type

Any

to_value(typ: Optional[str], value: str) → Any[source]

Convert command-line argument string to model (value).

Parameters
  • typ (Optional[str]) – The name of the model to create.

  • key – The string json of the data to populate it with.

Notes

Uses value_serializer to set the codec for the value (e.g. "json"), as set by the --value-serializer option.

Return type

Any

to_model(typ: Optional[str], value: str, serializer: Union[faust.types.codecs.CodecT, str, None]) → Any[source]

Convert command-line argument to model.

Generic version of to_key()/to_value().

Parameters
  • typ (Optional[str]) – The name of the model to create.

  • key – The string json of the data to populate it with.

  • serializer (Union[CodecT, str, None]) – The argument setting it apart from to_key/to_value enables you to specify a custom serializer not mandated by key_serializer, and value_serializer.

Notes

Uses value_serializer to set the codec for the value (e.g. "json"), as set by the --value-serializer option.

Return type

Any

import_relative_to_app(attr: str) → Any[source]

Import string like “module.Model”, or “Model” to model class.

Return type

Any

to_topic(entity: str) → Any[source]

Convert topic name given on command-line to app.topic().

Return type

Any

abbreviate_fqdn(name: str, *, prefix: str = '') → str[source]

Abbreviate fully-qualified Python name, by removing origin.

app.conf.origin is the package where the app is defined, so if this is examples.simple it returns the truncated:

>>> app.conf.origin
'examples.simple'
>>> abbr_fqdn(app.conf.origin,
...           'examples.simple.Withdrawal',
...           prefix='[...]')
'[...]Withdrawal'

but if the package is not part of origin it provides the full path:

>>> abbr_fqdn(app.conf.origin,
...           'examples.other.Foo', prefix='[...]')
'examples.other.foo'
Return type

str

faust.cli.clean_versions

Program faust reset used to delete local table state.

class faust.cli.clean_versions.clean_versions(ctx: click.core.Context, *args, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, **kwargs) → None[source]

Delete old version directories.

Warning

This command will result in the destruction of the following files:

  1. Table data for previous versions of the app.

remove_old_versiondirs() → None[source]

Remove data from old application versions from data directory.

Return type

None

faust.cli.completion

completion - Command line utility for completion.

Supports bash, ksh, zsh, etc.

class faust.cli.completion.completion(ctx: click.core.Context, *args, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, **kwargs) → None[source]

Output shell completion to be evaluated by the shell.

require_app = False
shell() → str[source]

Return the current shell used in this environment.

Return type

str

faust.cli.faust

Program faust (umbrella command).

class faust.cli.faust.agents(ctx: click.core.Context, *args, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, **kwargs) → None[source]

List agents.

title = 'Agents'
headers = ['name', 'topic', 'help']
sortkey = operator.attrgetter('name')
options = [<function option.<locals>.decorator>]
agents(*, local: bool = False) → Sequence[faust.types.agents.AgentT][source]

Convert list of agents to terminal table rows.

Return type

Sequence[AgentT[]]

agent_to_row(agent: faust.types.agents.AgentT) → Sequence[str][source]

Convert agent fields to terminal table row.

Return type

Sequence[str]

faust.cli.faust.call_command(command: str, args: List[str] = None, stdout: IO = None, stderr: IO = None, side_effects: bool = False, **kwargs) → Tuple[int, IO, IO][source]
Return type

Tuple[int, IO[AnyStr], IO[AnyStr]]

class faust.cli.faust.clean_versions(ctx: click.core.Context, *args, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, **kwargs) → None[source]

Delete old version directories.

Warning

This command will result in the destruction of the following files:

  1. Table data for previous versions of the app.

remove_old_versiondirs() → None[source]

Remove data from old application versions from data directory.

Return type

None

class faust.cli.faust.completion(ctx: click.core.Context, *args, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, **kwargs) → None[source]

Output shell completion to be evaluated by the shell.

require_app = False
shell() → str[source]

Return the current shell used in this environment.

Return type

str

class faust.cli.faust.livecheck(*args, **kwargs) → None[source]

Manage LiveCheck instances.

class faust.cli.faust.model(ctx: click.core.Context, *args, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, **kwargs) → None[source]

Show model detail.

headers = ['field', 'type', 'default']
options = [<function argument.<locals>.decorator>]
model_fields(model: Type[faust.types.models.ModelT]) → Sequence[Sequence[str]][source]

Convert model fields to terminal table rows.

Return type

Sequence[Sequence[str]]

field(field: faust.types.models.FieldDescriptorT) → Sequence[str][source]

Convert model field model to terminal table columns.

Return type

Sequence[str]

model_to_row(model: Type[faust.types.models.ModelT]) → Sequence[str][source]

Convert model to terminal table row.

Return type

Sequence[str]

class faust.cli.faust.models(ctx: click.core.Context, *args, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, **kwargs) → None[source]

List all available models as a tabulated list.

title = 'Models'
headers = ['name', 'help']
sortkey = operator.attrgetter('_options.namespace')
options = [<function option.<locals>.decorator>]
models(builtins: bool) → Sequence[Type[faust.types.models.ModelT]][source]

Convert list of models to terminal table rows.

Return type

Sequence[Type[ModelT]]

model_to_row(model: Type[faust.types.models.ModelT]) → Sequence[str][source]

Convert model fields to terminal table columns.

Return type

Sequence[str]

class faust.cli.faust.reset(ctx: click.core.Context, *args, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, **kwargs) → None[source]

Delete local table state.

Warning

This command will result in the destruction of the following files:

  1. The local database directories/files backing tables (does not apply if an in-memory store like memory:// is used).

Notes

This data is technically recoverable from the Kafka cluster (if intact), but it’ll take a long time to get the data back as you need to consume each changelog topic in total.

It’d be faster to copy the data from any standbys that happen to have the topic partitions you require.

class faust.cli.faust.send(ctx: click.core.Context, *args, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, **kwargs) → None[source]

Send message to agent/topic.

options = [<function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function argument.<locals>.decorator>, <function argument.<locals>.decorator>]
class faust.cli.faust.tables(ctx: click.core.Context, *args, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, **kwargs) → None[source]

List available tables.

title = 'Tables'
class faust.cli.faust.worker(ctx: click.core.Context, *args, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, **kwargs) → None[source]

Start worker instance for given app.

daemon = True
redirect_stdouts = True
worker_options = [<function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>]
options = [<function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>]
on_worker_created(worker: mode.worker.Worker) → None[source]

Print banner when worker starts.

Return type

None

as_service(loop: asyncio.events.AbstractEventLoop, *args, **kwargs) → mode.types.services.ServiceT[source]

Return the service this command should execute.

For the worker we simply start the application itself.

Note

The application will be started using a faust.Worker.

Return type

ServiceT[]

banner(worker: mode.worker.Worker) → str[source]

Generate the text banner emitted before the worker starts.

Return type

str

faust_ident() → str[source]

Return Faust version information as ANSI string.

Return type

str

platform() → str[source]

Return platform identifier as ANSI string.

Return type

str

faust.cli.livecheck

Program faust worker used to start application from console.

class faust.cli.livecheck.livecheck(*args, **kwargs) → None[source]

Manage LiveCheck instances.

faust.cli.model

Program faust model used to list details about a model.

class faust.cli.model.model(ctx: click.core.Context, *args, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, **kwargs) → None[source]

Show model detail.

headers = ['field', 'type', 'default']
options = [<function argument.<locals>.decorator>]
model_fields(model: Type[faust.types.models.ModelT]) → Sequence[Sequence[str]][source]

Convert model fields to terminal table rows.

Return type

Sequence[Sequence[str]]

field(field: faust.types.models.FieldDescriptorT) → Sequence[str][source]

Convert model field model to terminal table columns.

Return type

Sequence[str]

model_to_row(model: Type[faust.types.models.ModelT]) → Sequence[str][source]

Convert model to terminal table row.

Return type

Sequence[str]

faust.cli.models

Program faust models used to list models available.

class faust.cli.models.models(ctx: click.core.Context, *args, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, **kwargs) → None[source]

List all available models as a tabulated list.

title = 'Models'
headers = ['name', 'help']
sortkey = operator.attrgetter('_options.namespace')
options = [<function option.<locals>.decorator>]
models(builtins: bool) → Sequence[Type[faust.types.models.ModelT]][source]

Convert list of models to terminal table rows.

Return type

Sequence[Type[ModelT]]

model_to_row(model: Type[faust.types.models.ModelT]) → Sequence[str][source]

Convert model fields to terminal table columns.

Return type

Sequence[str]

faust.cli.params

Python click parameter types.

class faust.cli.params.CaseInsensitiveChoice(choices: Iterable[Any])[source]

Case-insensitive version of click.Choice.

convert(value: str, param: Optional[click.core.Parameter], ctx: Optional[click.core.Context]) → Any[source]

Convert string to case-insensitive choice.

Return type

Any

class faust.cli.params.TCPPort[source]

CLI option: TCP Port (integer in range 1 - 65535).

name = 'range[1-65535]'
class faust.cli.params.URLParam → None[source]

URL click parameter type.

Converts any string URL to yarl.URL.

name = 'URL'
convert(value: str, param: Optional[click.core.Parameter], ctx: Optional[click.core.Context]) → yarl.URL[source]

Convert str argument to yarl.URL.

Return type

URL

faust.cli.reset

Program faust reset used to delete local table state.

class faust.cli.reset.reset(ctx: click.core.Context, *args, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, **kwargs) → None[source]

Delete local table state.

Warning

This command will result in the destruction of the following files:

  1. The local database directories/files backing tables (does not apply if an in-memory store like memory:// is used).

Notes

This data is technically recoverable from the Kafka cluster (if intact), but it’ll take a long time to get the data back as you need to consume each changelog topic in total.

It’d be faster to copy the data from any standbys that happen to have the topic partitions you require.

faust.cli.send

Program faust send used to send events to agents and topics.

class faust.cli.send.send(ctx: click.core.Context, *args, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, **kwargs) → None[source]

Send message to agent/topic.

options = [<function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function argument.<locals>.decorator>, <function argument.<locals>.decorator>]
faust.cli.tables

Program faust tables used to list tables.

class faust.cli.tables.tables(ctx: click.core.Context, *args, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, **kwargs) → None[source]

List available tables.

title = 'Tables'
faust.cli.worker

Program faust worker used to start application from console.

class faust.cli.worker.worker(ctx: click.core.Context, *args, key_serializer: Union[faust.types.codecs.CodecT, str, None] = None, value_serializer: Union[faust.types.codecs.CodecT, str, None] = None, **kwargs) → None[source]

Start worker instance for given app.

daemon = True
redirect_stdouts = True
worker_options = [<function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>]
options = [<function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>, <function option.<locals>.decorator>]
on_worker_created(worker: mode.worker.Worker) → None[source]

Print banner when worker starts.

Return type

None

as_service(loop: asyncio.events.AbstractEventLoop, *args, **kwargs) → mode.types.services.ServiceT[source]

Return the service this command should execute.

For the worker we simply start the application itself.

Note

The application will be started using a faust.Worker.

Return type

ServiceT[]

banner(worker: mode.worker.Worker) → str[source]

Generate the text banner emitted before the worker starts.

Return type

str

faust_ident() → str[source]

Return Faust version information as ANSI string.

Return type

str

platform() → str[source]

Return platform identifier as ANSI string.

Return type

str

Changes

This document contain change notes for bugfix releases in the Faust 1.7 series. If you’re looking for previous releases, please visit the History section.

1.7.4

release-date

2019-07-19 2:57 P.M PST

release-by

Ask Solem (@ask)

  • Cython: Fixed missing field declaration (Issue #389).

    Contributed by Victor Miroshnikov (@superduper).

1.7.3

release-date

2019-07-12 1:13 P.M PST

release-by

Ask Solem (@ask)

  • Tables: Fix for Issue #383 when using the Cython extension.

1.7.2

release-date

2019-07-12 12:00 P.M PST

release-by

Ask Solem (@ask)

  • Tables: Fixed memory leak/back pressure in changelog producer buffer (Issue #383)

  • Models: Do not attempt to parse datetime when coerce/isodates disabled.

    Version 1.7 introduced a regression where datetimes were attempted to be parsed as ISO-8601 even with the isodates setting disabled.

    A regression test was added for this bug.

  • Models: New date_parser option to change datetime parsing function.

    The default date parser supports ISO-8601 only. To support this format and many other formats (such as 'Sat Jan 12 00:44:36 +0000 2019') you can select to use python-dateutil as the parser.

    To change the date parsing function for a model globally:

    from dateutil.parser import parse as parse_date
    
    class Account(faust.Record, coerce=True, date_parser=parse_date):
        date_joined: datetime
    

    To change the date parsing function for a specific field:

    from dateutil.parser import parse as parse_date
    from faust.models.fields import DatetimeField
    
    class Account(faust.Record, coerce=True):
        # date_joined: supports ISO-8601 only (default)
        date_joined: datetime
    
        #: date_last_login: comes from weird system with more human
        #: readable dates ('Sat Jan 12 00:44:36 +0000 2019').
        #: The dateutil parser can handle many different date and time
        #: formats.
        date_last_login: datetime = DatetimeField(date_parser=parse_date)
    
  • Models: Adds FieldDescriptor.exclude to exclude field when serialized

    See Excluding fields from representation for more information.

  • Documentation: improvements by…

1.7.1

release-date

2019-07-09 2:36 P.M PST

release-by

Ask Solem (@ask)

  • Stream: Exactly once processing now include the app id in transactional ids.

    This was done to support running multiple apps on the same Kafka broker.

    Contributed by Cesar Pantoja (@CesarPantoja).

  • Web: Fixed bug where sensor index should display when debug is enabled

    Tip

    If you want to enable the sensor statistics endpoint in production, without enabling the debug setting, you can do so by adding the following code:

    app.web.blueprints.add('/stats/', 'faust.web.apps.stats:blueprint')
    

    Contributed by @tyong920

  • Transport: The default value for broker_request_timeout is now 90 seconds (Issue #259)

  • Transport: Raise error if broker_session_timeout is greater than broker_request_timeout (Closes #259)

  • Dependencies: Now supports click 7.0 and later.

  • Dependencies: faust[debug] now depends on aiomonitor 0.4.4 or later.

  • Models: Field defined as Optional[datetime] now works with coerce and isodates settings.

    Previously a model would not recognize:

    class X(faust.Record, coerce=True):
        date: Optional[datetime]
    
    as a :class:`~faust.models.fields.DatetimeField` and when
    deserializing the field would end up as a string.
    
    It's now properly converted to :class:`~datetime.datetime`.
    
  • RocksDB: Adds table_key_index_size setting (Closes #372)

  • RocksDB: Reraise original error if python-rocksdb cannot be imported.

    Thanks to Sohaib Farooqi.

  • Django: Autodiscovery support now waits for Django to be fully setup.

    Contributed by Tomasz Nguyen (@swist).

  • Documentation improvements by:

1.7.0

release-date

2019-06-06 6:00 P.M PST

release-by

Ask Solem (@ask)

Backward Incompatible Changes
  • Transports: The in-memory transport has been removed (Issue #295).

    This transport was experimental and not working properly, so to avoid confusion we have removed it completely.

  • Stream: The Message.stream_meta attribute has been removed.

    This was used to keep arbitrary state for sensors during processing of a message.

    If you by rare chance are relying on this attribute to exist, you must now initialize it before using it:

    stream_meta = getattr(event.message, 'stream_meta', None)
    if stream_meta is None:
        stream_meta = event.message.stream_meta = {}
    
News
  • Requirements

  • Documentation: Documented a new deployment strategy to minimize rebalancing issues.

    See Managing a cluster for more information.

  • Models: Implements model validation.

    Validation of fields can be enabled by using the validation=True class option:

    import faust
    from decimal import Decimal
    
    class X(faust.Record, validation=True):
        name: str
        amount: Decimal
    

    When validation is enabled, the model will validate that the fields values are of the correct type.

    Fields can now also have advanced validation options, and you enable these by writing explicit field descriptors:

    import faust
    from decimal import Decimal
    from faust.models.fields import DecimalField, StringField
    
    class X(faust.Record, validation=True):
        name: str = StringField(max_length=30)
        amount: Decimal = DecimalField(min_value=10.0, max_value=1000.0)
    

    If you want to run validation manually, you can do so by keeping validation=False on the class, but calling model.is_valid():

    if not model.is_valid():
        print(model.validation_errors)
    
  • Models: Implements generic coercion support.

    This new feature replaces the isodates=True/decimals=True options and can be enabled by passing coerce=True:

    class Account(faust.Record, coerce=True):
        name: str
        login_times: List[datetime]
    
  • Testing: New experimental livecheck production testing API.

    There is no documentation yet, but an example in examples//livecheck.py.

    This is a new API to do end-to-end testing directly in production.

  • Topic: Adds new topic.send_soon() non-async method to buffer messages.

    This method can be used by any non-async def function to buffer up messages to be produced.

    It returns Awaitable[RecordMetadata]: a promise evaluated once the message is actually sent.

  • Stream: New Stream.filter method added useful for filtering events before repartitioning a stream.

  • App: New broker_consumer/broker_producer settings.

    These can now be used to configure individual transports for consuming and producing.

    The default value for both settings are taken from the broker setting.

    For example you can use aiokafka for the consumer, and confluent_kafka for the producer:

    app = faust.App(
        'id',
        broker_consumer='kafka://localhost:9092',
        broker_producer='confluent://localhost:9092',
    )
    
  • App: New broker_max_poll_interval setting.

    Contributed by Miha Troha (@mihatroha).

  • App: New topic_disable_leader setting disables the leader topic.

  • Table: Table constructor now accepts options argument passed on to underlying RocksDB storage.

    This can be used to configure advanced RocksDB options, such as block size, cache size, etc.

    Contributed by Miha Troha (@mihatroha).

Fixes
  • Stream: Fixes bug where non-finished event is acked (Issue #355).

  • Producer: Exactly once: Support producing to non-transactional topics (Issue #339)

  • Agent: Test: Fixed asyncio.CancelledError (Issue #322).

  • Cython: Fixed issue with sensor state not being passed to after.

  • Tables: Key index: now inherits configuration from source table (Issue #325)

  • App: Fix list of strings for broker param in URL (Issue #330).

    Contributed by Nimish Telang (@nimish).

  • Table: Fixed blocking behavior when populating tables.

    Symptom was warnings about timers waking up too late.

  • Documentation Fixes by:

Improvements
  • Documentation: Rewrote fragmented documentation to be more concise.

  • Documentation improvements by

Contributing

Welcome!

This document is fairly extensive and you aren’t really expected to study this in detail for small contributions;

The most important rule is that contributing must be easy and that the community is friendly and not nitpicking on details, such as coding style.

If you’re reporting a bug you should read the Reporting bugs section below to ensure that your bug report contains enough information to successfully diagnose the issue, and if you’re contributing code you should try to mimic the conventions you see surrounding the code you’re working on, but in the end all patches will be cleaned up by the person merging the changes so don’t worry too much.

Code of Conduct

Everyone interacting in the project’s code bases, issue trackers, chat rooms, and mailing lists is expected to follow the Faust Code of Conduct.

As contributors and maintainers of these projects, and in the interest of fostering an open and welcoming community, we pledge to respect all people who contribute through reporting issues, posting feature requests, updating documentation, submitting pull requests or patches, and other activities.

We are committed to making participation in these projects a harassment-free experience for everyone, regardless of level of experience, gender, gender identity and expression, sexual orientation, disability, personal appearance, body size, race, ethnicity, age, religion, or nationality.

Examples of unacceptable behavior by participants include:

  • The use of sexualized language or imagery

  • Personal attacks

  • Trolling or insulting/derogatory comments

  • Public or private harassment

  • Publishing other’s private information, such as physical or electronic addresses, without explicit permission

  • Other unethical or unprofessional conduct.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct. By adopting this Code of Conduct, project maintainers commit themselves to fairly and consistently applying these principles to every aspect of managing this project. Project maintainers who do not follow or enforce the Code of Conduct may be permanently removed from the project team.

This code of conduct applies both within project spaces and in public spaces when an individual is representing the project or its community.

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by opening an issue or contacting one or more of the project maintainers.

This Code of Conduct is adapted from the Contributor Covenant, version 1.2.0 available at http://contributor-covenant.org/version/1/2/0/.

Reporting Bugs

Security

You must never report security related issues, vulnerabilities or bugs including sensitive information to the bug tracker, or elsewhere in public. Instead sensitive bugs must be sent by email to security@celeryproject.org.

If you’d like to submit the information encrypted our PGP key is:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.4.15 (Darwin)

mQENBFJpWDkBCADFIc9/Fpgse4owLNvsTC7GYfnJL19XO0hnL99sPx+DPbfr+cSE
9wiU+Wp2TfUX7pCLEGrODiEP6ZCZbgtiPgId+JYvMxpP6GXbjiIlHRw1EQNH8RlX
cVxy3rQfVv8PGGiJuyBBjxzvETHW25htVAZ5TI1+CkxmuyyEYqgZN2fNd0wEU19D
+c10G1gSECbCQTCbacLSzdpngAt1Gkrc96r7wGHBBSvDaGDD2pFSkVuTLMbIRrVp
lnKOPMsUijiip2EMr2DvfuXiUIUvaqInTPNWkDynLoh69ib5xC19CSVLONjkKBsr
Pe+qAY29liBatatpXsydY7GIUzyBT3MzgMJlABEBAAG0MUNlbGVyeSBTZWN1cml0
eSBUZWFtIDxzZWN1cml0eUBjZWxlcnlwcm9qZWN0Lm9yZz6JATgEEwECACIFAlJp
WDkCGwMGCwkIBwMCBhUIAgkKCwQWAgMBAh4BAheAAAoJEOArFOUDCicIw1IH/26f
CViDC7/P13jr+srRdjAsWvQztia9HmTlY8cUnbmkR9w6b6j3F2ayw8VhkyFWgYEJ
wtPBv8mHKADiVSFARS+0yGsfCkia5wDSQuIv6XqRlIrXUyqJbmF4NUFTyCZYoh+C
ZiQpN9xGhFPr5QDlMx2izWg1rvWlG1jY2Es1v/xED3AeCOB1eUGvRe/uJHKjGv7J
rj0pFcptZX+WDF22AN235WYwgJM6TrNfSu8sv8vNAQOVnsKcgsqhuwomSGsOfMQj
LFzIn95MKBBU1G5wOs7JtwiV9jefGqJGBO2FAvOVbvPdK/saSnB+7K36dQcIHqms
5hU4Xj0RIJiod5idlRC5AQ0EUmlYOQEIAJs8OwHMkrdcvy9kk2HBVbdqhgAREMKy
gmphDp7prRL9FqSY/dKpCbG0u82zyJypdb7QiaQ5pfPzPpQcd2dIcohkkh7G3E+e
hS2L9AXHpwR26/PzMBXyr2iNnNc4vTksHvGVDxzFnRpka6vbI/hrrZmYNYh9EAiv
uhE54b3/XhXwFgHjZXb9i8hgJ3nsO0pRwvUAM1bRGMbvf8e9F+kqgV0yWYNnh6QL
4Vpl1+epqp2RKPHyNQftbQyrAHXT9kQF9pPlx013MKYaFTADscuAp4T3dy7xmiwS
crqMbZLzfrxfFOsNxTUGE5vmJCcm+mybAtRo4aV6ACohAO9NevMx8pUAEQEAAYkB
HwQYAQIACQUCUmlYOQIbDAAKCRDgKxTlAwonCNFbB/9esir/f7TufE+isNqErzR/
aZKZo2WzZR9c75kbqo6J6DYuUHe6xI0OZ2qZ60iABDEZAiNXGulysFLCiPdatQ8x
8zt3DF9BMkEck54ZvAjpNSern6zfZb1jPYWZq3TKxlTs/GuCgBAuV4i5vDTZ7xK/
aF+OFY5zN7ciZHkqLgMiTZ+RhqRcK6FhVBP/Y7d9NlBOcDBTxxE1ZO1ute6n7guJ
ciw4hfoRk8qNN19szZuq3UU64zpkM2sBsIFM9tGF2FADRxiOaOWZHmIyVZriPFqW
RUwjSjs7jBVNq0Vy4fCu/5+e+XLOUBOoqtM5W7ELt0t1w9tXebtPEetV86in8fU2
=0chn
-----END PGP PUBLIC KEY BLOCK-----
Other bugs

Bugs can always be described to the Mailing list, but the best way to report an issue and to ensure a timely response is to use the issue tracker.

  1. Create a GitHub account.

You need to create a GitHub account to be able to create new issues and participate in the discussion.

  1. Determine if your bug is really a bug.

You shouldn’t file a bug if you’re requesting support. For that you can use the Mailing list, or Slack.

  1. Make sure your bug hasn’t already been reported.

Search through the appropriate Issue tracker. If a bug like yours was found, check if you have new information that could be reported to help the developers fix the bug.

  1. Check if you’re using the latest version.

A bug could be fixed by some other improvements and fixes - it might not have an existing report in the bug tracker. Make sure you’re using the latest release of Faust.

  1. Collect information about the bug.

To have the best chance of having a bug fixed, we need to be able to easily reproduce the conditions that caused it. Most of the time this information will be from a Python traceback message, though some bugs might be in design, spelling or other errors on the website/docs/code.

  1. If the error is from a Python traceback, include it in the bug report.

  2. We also need to know what platform you’re running (Windows, macOS, Linux, etc.), the version of your Python interpreter, and the version of Faust, and related packages that you were running when the bug occurred.

  3. If you’re reporting a race condition or a deadlock, tracebacks can be hard to get or might not be that useful. Try to inspect the process to get more diagnostic data. Some ideas:

    • Collect tracing data using strace`_(Linux), :command:`dtruss (macOS), and ktrace (BSD), ltrace, and lsof.

  4. Include the output from the faust report command:

    $ faust -A proj report
    

    This will also include your configuration settings and it try to remove values for keys known to be sensitive, but make sure you also verify the information before submitting so that it doesn’t contain confidential information like API tokens and authentication credentials.

  1. Submit the bug.

By default GitHub will email you to let you know when new comments have been made on your bug. In the event you’ve turned this feature off, you should check back on occasion to ensure you don’t miss any questions a developer trying to fix the bug might ask.

Issue Trackers

Bugs for a package in the Faust ecosystem should be reported to the relevant issue tracker.

If you’re unsure of the origin of the bug you can ask the Mailing list, or just use the Faust issue tracker.

Contributors guide to the code base

There’s a separate section for internal details, including details about the code base and a style guide.

Read Developer Guide for more!

Versions

Version numbers consists of a major version, minor version and a release number. Faust uses the versioning semantics described by SemVer: http://semver.org.

Stable releases are published at PyPI while development releases are only available in the GitHub git repository as tags. All version tags starts with “v”, so version 0.8.0 is the tag v0.8.0.

Branches

Current active version branches:

You can see the state of any branch by looking at the Changelog:

If the branch is in active development the topmost version info should contain meta-data like:

2.4.0
======
:release-date: TBA
:status: DEVELOPMENT
:branch: dev (git calls this master)

The status field can be one of:

  • PLANNING

    The branch is currently experimental and in the planning stage.

  • DEVELOPMENT

    The branch is in active development, but the test suite should be passing and the product should be working and possible for users to test.

  • FROZEN

    The branch is frozen, and no more features will be accepted. When a branch is frozen the focus is on testing the version as much as possible before it is released.

dev branch

The dev branch (called “master” by git), is where development of the next version happens.

Maintenance branches

Maintenance branches are named after the version – for example, the maintenance branch for the 2.2.x series is named 2.2.

Previously these were named releaseXX-maint.

The versions we currently maintain is:

  • 1.0

    This is the current series.

Archived branches

Archived branches are kept for preserving history only, and theoretically someone could provide patches for these if they depend on a series that’s no longer officially supported.

An archived version is named X.Y-archived.

Our currently archived branches are:

We don’t currently have any archived branches.

Feature branches

Major new features are worked on in dedicated branches. There’s no strict naming requirement for these branches.

Feature branches are removed once they’ve been merged into a release branch.

Tags

  • Tags are used exclusively for tagging releases. A release tag is named with the format vX.Y.Z – for example v2.3.1.

  • Experimental releases contain an additional identifier vX.Y.Z-id – for example v3.0.0-rc1.

  • Experimental tags may be removed after the official release.

Working on Features & Patches

Note

Contributing to Faust should be as simple as possible, so none of these steps should be considered mandatory.

You can even send in patches by email if that’s your preferred work method. We won’t like you any less, any contribution you make is always appreciated!

However following these steps may make maintainers life easier, and may mean that your changes will be accepted sooner.

Forking and setting up the repository
Create your fork

First you need to fork the Faust repository, a good introduction to this is in the GitHub Guide: Fork a Repo.

After you have cloned the repository you should checkout your copy to a directory on your machine:

$ git clone git@github.com:username/faust.git

When the repository is cloned enter the directory to set up easy access to upstream changes:

$ cd faust
$ git remote add upstream git://github.com/robinhood/faust.git
$ git fetch upstream

If you need to pull in new changes from upstream you should always use the --rebase option to git pull:

$ git pull --rebase upstream master

With this option you don’t clutter the history with merging commit notes. See Rebasing merge commits in git. If you want to learn more about rebasing see the Rebase section in the GitHub guides.

Start Developing

To start developing Faust you should install the requirements and setup the development environment so that Python uses the Faust development directory.

To do so run:

$ make develop

If you want to install requirements manually you should at least install the git pre-commit hooks (the make develop command above automatically runs this as well):

$ make hooks

If you also want to install C extensions, including the RocksDB bindings then you can use make cdevelop instead of make develop:

$ make cdevelop

Note

If you need to work on a different branch than the one git calls master, you can fetch and checkout a remote branch like this:

$ git checkout --track -b 2.0-devel origin/2.0-devel
Running the test suite

To run the Faust test suite you need to install a few dependencies. A complete list of the dependencies needed are located in requirements/test.txt.

Both the stable and the development version have testing related dependencies, so install these:

$ pip install -U -r requirements/test.txt
$ pip install -U -r requirements/default.txt

After installing the dependencies required, you can now execute the test suite by calling py.test <pytest:

$ py.test

This will run the unit tests, functional tests and doc example tests, but not integration tests or stress tests.

Some useful options to py.test are:

  • -x

    Stop running the tests at the first test that fails.

  • -s

    Don’t capture output

  • -v

    Run with verbose output.

If you want to run the tests for a single test file only you can do so like this:

$ py.test t/unit/test_app.py
Creating pull requests

When your feature/bugfix is complete you may want to submit a pull requests so that it can be reviewed by the maintainers.

Creating pull requests is easy, and also let you track the progress of your contribution. Read the Pull Requests section in the GitHub Guide to learn how this is done.

You can also attach pull requests to existing issues by following the steps outlined here: http://bit.ly/koJoso

Running the tests on all supported Python versions

There’s a tox configuration file in the top directory of the distribution.

To run the tests for all supported Python versions simply execute:

$ tox

Use the tox -e option if you only want to test specific Python versions:

$ tox -e 2.7
Building the documentation

To build the documentation you need to install the dependencies listed in requirements/docs.txt:

$ pip install -U -r requirements/docs.txt

After these dependencies are installed you should be able to build the docs by running:

$ cd docs
$ rm -rf _build
$ make html

Make sure there are no errors or warnings in the build output. After building succeeds the documentation is available at _build/html.

Verifying your contribution

To use these tools you need to install a few dependencies. These dependencies can be found in requirements/dist.txt.

Installing the dependencies:

$ pip install -U -r requirements/dist.txt
pyflakes & PEP-8

To ensure that your changes conform to PEP 8 and to run pyflakes execute:

$ make flakecheck

To not return a negative exit code when this command fails use the flakes target instead:

$ make flakes
API reference

To make sure that all modules have a corresponding section in the API reference please execute:

$ make apicheck
$ make indexcheck

If files are missing you can add them by copying an existing reference file.

If the module is internal it should be part of the internal reference located in docs/internals/reference/. If the module is public it should be located in docs/reference/.

For example if reference is missing for the module faust.worker.awesome and this module is considered part of the public API, use the following steps:

Use an existing file as a template:

$ cd docs/reference/
$ cp faust.schedules.rst faust.worker.awesome.rst

Edit the file using your favorite editor:

$ vim faust.worker.awesome.rst

    # change every occurrence of ``faust.schedules`` to
    # ``faust.worker.awesome``

Edit the index using your favorite editor:

$ vim index.rst

    # Add ``faust.worker.awesome`` to the index.

Commit your changes:

# Add the file to git
$ git add faust.worker.awesome.rst
$ git add index.rst
$ git commit faust.worker.awesome.rst index.rst \
    -m "Adds reference for faust.worker.awesome"
Configuration Reference

To make sure that all settings have a corresponding section in the configuration reference, please execute:

$ make configcheck

If settings are missing from there an error is produced, and you can proceed by documenting the settings in docs/userguide/settings.rst.

Coding Style

You should probably be able to pick up the coding style from surrounding code, but it is a good idea to be aware of the following conventions.

  • We use static types and the mypy type checker to verify them.

    Python code must import these static types when using them, so to keep static types lightweight we define interfaces for classes in faust/types/.

    For example for the fauts.App class, there is a corresponding faust.types.app.AppT; for faust.Channel there is a faust.types.channels.ChannelT and similarly for most other classes in the library.

    We suffer some duplication because of this, but it keeps static typing imports fast and reduces the need for recursive imports.

    In some cases recursive imports still happen, in that case you can “trick” the type checker into importing it, while regular Python does not:

    if typing.TYPE_CHECKING:
        from faust.app import App as _App
    else:
        class _App: ...  # noqa
    

Note how we prefix the symbol with underscore to make sure anybody reading the code will think twice before using it.

  • All Python code must follow the PEP 8 guidelines.

pep8 is a utility you can use to verify that your code is following the conventions.

  • Docstrings must follow the PEP 257 conventions, and use the following style.

    Do this:

    def method(self, arg: str) -> None:
        """Short description.
    
        More details.
    
        """
    

    or:

    def method(self, arg: str) -> None:
        """Short description."""
    

    but not this:

    def method(self, arg: str) -> None:
        """
        Short description.
        """
    
  • Lines shouldn’t exceed 78 columns.

    You can enforce this in vim by setting the textwidth option:

    set textwidth=78
    

    If adhering to this limit makes the code less readable, you have one more character to go on. This means 78 is a soft limit, and 79 is the hard limit :)

  • Import order

    • Python standard library

    • Third-party packages.

    • Other modules from the current package.

    or in case of code using Django:

    • Python standard library (import xxx)

    • Third-party packages.

    • Django packages.

    • Other modules from the current package.

    Within these sections the imports should be sorted by module name.

    Example:

    import threading
    import time
    from collections import deque
    from Queue import Queue, Empty
    
    from .platforms import Pidfile
    from .five import zip_longest, items, range
    from .utils.time import maybe_timedelta
    
  • Wild-card imports must not be used (from xxx import *).

Contributing features requiring additional libraries

Some features like a new result backend may require additional libraries that the user must install.

We use setuptools extra_requires for this, and all new optional features that require third-party libraries must be added.

  1. Add a new requirements file in requirements/extras

    For the RocksDB store this is requirements/extras/rocksdb.txt, and the file looks like this:

    python-rocksdb
    

    These are pip requirement files so you can have version specifiers and multiple packages are separated by newline. A more complex example could be:

    # python-rocksdb 2.0 breaks Foo
    python-rocksdb>=1.0,<2.0
    thrift
    
  2. Modify setup.py

    After the requirements file is added you need to add it as an option to setup.py in the EXTENSIONS section:

    EXTENSIONS = {
        'debug',
        'fast',
        'rocksdb',
        'uvloop',
    }
    
  3. Document the new feature in docs/includes/installation.txt

    You must add your feature to the list in the bundles section of docs/includes/installation.txt.

    After you’ve made changes to this file you need to render the distro README file:

    $ pip install -U requirements/dist.txt
    $ make readme
    

Contacts

This is a list of people that can be contacted for questions regarding the official git repositories, PyPI packages Read the Docs pages.

If the issue isn’t an emergency then it’s better to report an issue.

Release Procedure

Updating the version number

The version number must be updated two places:

  • faust/__init__.py

  • docs/include/introduction.txt

After you have changed these files you must render the README files. There’s a script to convert sphinx syntax to generic reStructured Text syntax, and the make target readme does this for you:

$ make readme

Now commit the changes:

$ git commit -a -m "Bumps version to X.Y.Z"

and make a new version tag:

$ git tag vX.Y.Z
$ git push --tags
Releasing

Commands to make a new public stable release:

$ make distcheck  # checks pep8, autodoc index, runs tests and more
$ make dist  # NOTE: Runs git clean -xdf and removes files not in the repo.
$ python setup.py sdist upload --sign --identity='Celery Security Team'
$ python setup.py bdist_wheel upload --sign --identity='Celery Security Team'

If this is a new release series then you also need to do the following:

  • Go to the Read The Docs management interface at:

    http://readthedocs.org/projects/faust/?fromdocs=faust

  • Enter “Edit project”

    Change default branch to the branch of this series, for example, use the 1.0 branch for the 1.0 series.

  • Also add the previous version under the “versions” tab.

Developer Guide

Release

1.7

Date

Jul 23, 2019

Contributors Guide to the Code

Module Overview
faust.app

Defines the Faust application: configuration, sending messages, etc.

faust.cli

Command-line interface.

faust.exceptions

All custom exceptions are defined in this module.

faust.models

Models describe how message keys and values are serialized/deserialized.

faust.sensors

Sensors record statistics from a running Faust application.

faust.serializers

Serialization using JSON, and codecs for encoding.

faust.stores

Table storage: in-memory, RocksDB, etc.

faust.streams

Stream and table implementation.

faust.topics

Creating topic descriptions, and tools related to topics.

faust.transport

Message transport implementations, e.g. aiokafka.

faust.types

Public interface for static typing.

faust.utils

Utilities. Note: This package is not allowed to import from the top-level package.

faust.web

Web abstractions and web applications served by the Faust web server.

faust.windows

Windowing strategies.

faust.worker

Deployment helper for faust applications: signal handling, graceful shutdown, etc.

Services

Everything in Faust that can be started/stopped and restarted, is a Service.

Services can start other services, but they can also start asyncio.Task via self.add_future. These dependencies will be started/stopped/restarted with the service.

Worker

The worker can be used to start a Faust application, and performs tasks like setting up logging, installs signal handlers and debugging tools etc.

App

The app configures the Faust instance, and is the entry point for just about everything that happens in a Faust instance. Consuming/Producing messages, starting streams and agents, etc.

The app is usually started by Worker, but can also be started alone if less operating system interaction is wanted, like if you want to embed Faust in an application that already sets up signal handling and logging.

Monitor

The monitor is a feature-complete sensor that collects statistics about the running instance. The monitor data can be exposed by the web server.

Producer

The producer is used to publish messages to Kafka topics, and is started whenever necessary. The App will always starts this when a Faust instance is starting, in anticipation of messages to be produced.

Consumer

The Consumer is responsible for consuming messages from Kafka topics, to be delivered to the streams. It does not actually fetch messages (the Fetcher services does that), but it handles everything to do with consumption, like managing topic subscriptions etc.

Agent

Agents are also services, and any async function decorated using @app.agent will start with the app.

Conductor

The topic conductor manages topic subscriptions, and forward messages from the Kafka consumer to the streams.

app.stream(topic) will iterate over the topic: aiter(topic). The conductor feeds messages into that iteration, so the stream receives messages in the topic:

async for event in stream(event async for event in topic)
TableManager

Manages tables, including recovery from changelog and caching table contents. The table manager also starts the tables themselves, and acts as a registry of tables in the Faust instance.

Table

Any user defined table.

Store

Every table has a separate store, the store describes how the table is stored in this instance. It could be stored in-memory (default), or as a RocksDB key/value database if the data set is too big to fit in memory.

Stream

These are individual streams, started after everything is set up.

Fetcher

The Fetcher is the service that actually retrieves messages from the kafka topic. The fetcher forwards these messages to the TopicManager, which in turns forwards it to Topic’s and streams.

Web

This is a local web server started by the app (see web_enable setting).

Partition Assignor

Kafka Streams

Kafka Streams distributes work across multiple processes by using the consumer group protocol introduced in Kafka 0.9.0. Kafka elects one of the consumers in the consumer group to use its partition assignment strategy to assign partitions to the consumers in the group. The leader gets access to every client’s subscriptions and assigns partitions accordingly.

Kafka Streams uses a sticky partition assignment strategy to minimize movement in the case of rebalancing. Further, it is also redundant in its partition assignment in the sense that it assigns some standby tasks to maintain state store replicas.

The StreamPartitionAssignor used by Kafka Streams works as follows:

  1. Check all repartition source topics and use internal topic manager to make sure they have been created with the right number of partitions.

  2. Using customized partition grouper (DefaultPartitionGrouper) to generate tasks along with their assigned partitions; also make sure that the task’s corresponding changelog topics have been created with the right number of partitions.

  3. Using StickyTaskAssignor to assign tasks to consumer clients.

    • Assign a task to a client which was running it previously. If there is no such client, assign a task to a client which has its valid local state.

    • A client may have more than one stream threads. The assignor tries to assign tasks to a client proportionally to the number of threads.

    • Try not to assign the same set of tasks to two different clients

    The assignment is done in one-pass. The result may not satisfy above all.

  4. Within each client, tasks are assigned to consumer clients in round-robin manner.

Faust

Faust differs from Kafka Streams in some fundamental ways one of which is that a task in Faust differs from a task in Kafka Streams. Further, Faust doesn’t have the concept of a pre-defined topology and subscribes to streams as and when required in the application.

As a result, the PartitionAssignor in Faust can get rid of steps one and two mentioned above and rely on the primitives repartitioning streams and creating changelog topics to create topics with the correct number of partitions based on the source topics.

We can largely simplify step three above since there is no concept of task as in Kafka Streams, i.e. we do not introspect the application topology to define a task that would be assigned to the clients. We simply need to make sure that the correct partitions are assigned to the clients and the client streams and processors should handle dealing with the co-partitioning while processing the streams and forwarding data between the different processors.

PartitionGrouper

This can be simplified immensely by grouping the same partition numbers onto the same clients for all topics with the same number of partitions. This way we can guarantee that co-partitioning for all topics requiring co-partitioning (ex: in the case of joins and aggregates) as long as the topics have the correct number of partitions (which we are making the processors implicitly guarantee).

StickyAssignor

With our simple PartitionGrouper we can use a StickyPartitionAssignor to assign partitions to the clients. However we need to explicitly handle standby assignments here. We use the StickyPartitionAssignor design approved in KIP-54 as the basis for our sticky assignor.

Concerns

With the above design we need to be careful around the following concerns:

  • We need to assign a partition (where changelog) is involved to a client which contains a standby replica for the given topic/partition whenever possible. This can result in unbalanced assignment. We can fix this by evenly and randomly distributing standbys such that over the long term each rebalance will cause the partitions being re-assigned be evenly balanced across all clients.

  • Network Partitions and other distributed systems failure cases - We delegate this to the Kafka protocol. The Kafka Consumer Protocol handles a lot of the failure conditions involved with the Consumer group leader election such as leader failures, node failures, etc. Network Partitions in Kafka are not handled here as those would result in bigger issues than consumer partition assignment issues.

History

This section contains historical change histories, for the latest version please visit Changes.

Release

1.7

Date

Jul 23, 2019

Change history for Faust 1.6

This document contain change notes for bugfix releases in the Faust 1.6.x series. If you’re looking for changes in the latest series, please visit the latest Changes.

For even older releases you can visit the History section.

1.6.1
release-date

2019-05-07 2:00 P.M PST

release-by

Ask Solem (@ask)

  • Web: Fixes index page of web server by adding collections.deque support to our JSON serializer.

    Thanks to Brandon Ewing for detecting this issue.

1.6.0
release-date

2019-04-16 5:41 P.M PST

release-by

Ask Solem (@ask)

This release has minor backward incompatible changes. that only affects those who are using custom sensors. See note below.

  • Requirements:

    • Now depends on robinhood-aiokafka 1.0.3

      This version disables the “LeaveGroup” timeout added in 1.0.0, as it was causing problems.

  • Sensors: on_stream_event_in now passes state to on_stream_event_out.

    This is backwards incompatible but fixes a rare race condition.

    Custom sensors that have to use stream_meta must be updated to use this state.

  • Sensors: Added new sensor methods:

    • on_rebalance_start(app)

      Called when a new rebalance is starting.

    • on_rebalance_return(app)

      Called when the worker has returned data to Kafka.

      The next step of the rebalancing phase will be the table recovery process, but this happens in the background and rebalancing will be considered complete for this worker.

    • on_rebalance_end(app)

      Called when all tables are fully recovered and the worker is ready to start processing events in the stream.

  • Sensors: The type of a sensor that returns/takes state is now Dict instead of a Mapping (as the state is mutable).

  • Monitor: Optimized latency history cleanup.

  • Recovery: Fixed bug with highwater returning None.

  • Tracing: The traced decorator would return None for wrapped coroutines, but we now return the actual return value.

  • Tracing: Added tracing of aiokafka group coordinator processes

    (rebalancing and find coordinator).

Change history for Faust 1.5

This document contain change notes for bugfix releases in the Faust 1.5.x series. If you’re looking for changes in the latest series, please visit the latest Changes.

For even older releases you can visit the History section.

1.5.4
release-date

2019-04-9 2:09 P.M PST

release-by

Ask Solem (@ask)

  • New producer_api_version setting.

    This can be set to the value “0.10” to remove headers from all messages produced.

    Use this if you have downstream consumers that do not support the new Kafka protocol format yet.

  • The stream_recovery_delay setting has been disabled by default.

    After rebalancing the worker will sleep a bit before starting recovery, the idea being that another recovery may be waiting just behind it so we wait a bit, but this has shown to be not as effective as intended.

  • Web: Cache can now be configured to take headers into account.

    Create the cache manager for your blueprint with the include_headers argument:

    cache = blueprint.cache(timeout=300.0, include_headers=True)
    

    Contributed by Sanyam Satia (@ssatia).

1.5.3
release-date

2019-04-06 11:25 P.M PST

release-by

Ask Solem (@ask)

  • Requirements:

    • Now depends on robinhood-aiokafka 1.0.2

      This version disables the “LeaveGroup” timeout added in 1.0.0, as it was causing problems.

  • Documentation: Fixed spelling.

  • Tests: Fixed flaky regression test.

1.5.2
release-date

2019-03-28 11:00 A.M PST

release-by

Ask Solem (@ask)

  • Requirements

  • Timers: Prevent drift + add some tiny drift.

    Thanks to Bob Haddleton (@bobh66).

  • App: Autodiscovery now avoids importing __main__.py (Issue #324).

    Added regression test.

  • The stream_ack_exceptions setting has been deprecated.

    It was not having any effect, and we have no current use for it.

  • The stream_ack_cancelled_tasks setting has been deprecated.

    It was not having any effect, and we have no current use for it.

  • App: Autodiscovery failed to load when using app.main() in some cases (Issue #323).

    Added regression test.

  • Worker: Fixed error during agent shutdown.

  • Monitor: Monitor assignment latency + assignments completed/failed.

    Implemented in the default monitor, but also for statsd and datadog.

  • CLI: The faust program had the wrong help description.

  • Docs: Fixes typo in web_cors_options example.

  • App: Do no wait for table recovery finished signal, if the app is not starting the recovery service.

1.5.1
release-date

2019-03-24 09:45 P.M PST

release-by

Ask Solem (@ask)

  • Fixed hanging in partition assignment introduced in Faust 1.5 (Issue #320).

    Contributed by Bob Haddleton (@bobh66).

1.5.0
release-date

2019-03-22 02:18 P.M PST

release-by

Ask Solem (@ask)

  • Requirements

  • Exactly-Once semantics: New processing_guarantee setting.

    Experimental support for “exactly-once” semantics.

    This mode ensures tables and counts in tables/windows are consistent even as nodes in the cluster are abruptly terminated.

    To enable this mode set the processing_guarantee setting:

    App(processing_guarantee='exactly_once')
    

    Note

    If you do enable “exactly_once” for an existing app, you must make sure all workers are running the latest version and possibly starting from a clean set of intermediate topics.

    You can accomplish this by bumping up the app version number:

    App(version=2, processing_guarantee='exactly_once')
    

    The new processing guarantee require a new version of the assignor protocol, for this reason a “exactly_once” worker will not work with older versions of Faust running in the same consumer group: so to roll out this change you will have to stop all the workers, deploy the new version and only then restart the workers.

  • New optimizations for stream processing and windows.

    If Cython is available during installation, Faust will be installed with compiled extensions.

    You can set the NO_CYTHON environment variable to disable the use of these extensions even if compiled.

  • New topic_allow_declare setting.

    If disabled your faust worker instances will never actually declare topics.

    Use this if your Kafka administrator does not allow you to create topics.

  • New ConsumerScheduler setting.

    This class can override how events are delivered to agents. The default will go round robin between both topics and partitions, to ensure all topic partitions get a chance of being processed.

    Contributed by Miha Troha (@miatroha).

  • Authentication: Support for GSSAPI authentication.

    See documentation for the broker_credentials setting.

    Contributed by Julien Surloppe (@jsurloppe).

  • Authentication: Support for SASL authentication.

    See documentation for the broker_credentials setting.

  • New broker_credentials setting can also be used to configure SSL authentication.

  • Models: Records can now use comparison operators.

    Comparison of models using the >, <, >= and <= operators now work similarly to dataclasses.

  • Models: Now raise an error if non-default fields follows default fields.

    The following model will now raise an error:

    class Account(faust.Record):
        name: str
        amount: int = 3
        userid: str
    

    This is because a non-default field is defined after a default field, and this would mess up argument ordering.

    To define the model without error, make sure you move default fields below any non-default fields:

    class Account(faust.Record):
        name: str
        userid: str
        amount: int = 3
    

    Note

    Remember that when adding fields to an already existing model you should always add new fields as optional fields.

    This will help your application stay backward compatible.

  • App: Sending messages API now supports a headers argument.

    When sending messages you can now attach arbitrary headers as a dict, or list of tuples; where the values are bytes:

    await topic.send(key=key, value=value, headers={'x': b'foo'})
    

    Supported transports

    Headers are currently only supported by the default aiokafka transport, and requires Kafka server 0.11 and later.

  • Agent: RPC operations can now take advantage of message headers.

    The default way to attach metadata to values, such as the reply-to address and the correlation id, is to wrap the value in an envelope.

    With headers support now landed we can use message headers for this:

    @app.agent(use_reply_headers=True)
    async def x(stream):
        async for item in stream:
            yield item ** 2
    

    Faust will be using headers by default in version 2.0.

  • App: Sending messages API now supports a timestamp argument (Issue #276).

    When sending messages you can now specify the timestamp of the message:

    await topic.send(key=key, value=value, timestamp=custom_timestamp)
    

    If no timestamp is provided the current time will be used (time.time()).

    Contributed by Miha Troha (@mihatroha).

  • App: New consumer_auto_offset_reset setting (Issue #267).

    Contributed by Ryan Whitten (@rwhitten577).

  • Stream: group_by repartitioned topic name now includes the agent name (Issue #284).

  • App: Web server is no longer running in a separate thread by default.

    Running the web server in a separate thread is beneficial as it will not be affected by back pressure in the main thread event loop, but it also makes programming harder when it cannot share the loop of the parent.

    If you want to run the web server in a separate thread, use the new web_in_thread setting.

  • App: New web_in_thread controls separate thread for web server.

  • App: New logging_config setting.

  • App: Autodiscovery now ignores modules matching “test” (Issue #242).

    Contributed by Chris Seto (@chrisseto).

  • Transport: aiokafka transport now supports headers when using Kafka server versions 0.11 and later.

  • Tables: New flags can be used to check if actives/standbys are up to date.

    • app.tables.actives_ready

      Set to True when tables have synced all active partitions.

    • app.tables.standbys_ready

      Set to True when standby partitions are up-to-date.

  • RocksDB: Now crash with ConsistencyError if the persisted offset is greater than the current highwater.

    This means the changelog topic has been modified in Kafka and the recorded offset no longer exists. We crash as we believe this require human intervention, but should some projects have less strict durability requirements we may make this an option.

  • RocksDB: len(table) now only counts databases for active partitions (Issue #270).

  • Agent: Fixes crash when worker assigned no partitions and having the isolated_partitions flag enabled (Issue #181).

  • Table: Fixes KeyError crash for already removed key.

  • Table: WindowRange is no longer a NamedTuple.

    This will make it easier to avoid hashing mistakes such that window ranges are never represented as both normal tuple and named tuple variants in the table.

  • Transports: Adds experimental confluent:// transport.

    This transport uses the confluent-kafka client.

    It is not feature complete, and notably is missing sticky partition assignment so you should not use this transport for tables.

    Warning

    The confluent:// transport is not recommended for production use at this time as it has several limitations.

  • Stream: Fixed deadlock when using Stream.take to buffer events (Issue #262).

    Contributed by Nimi Wariboko Jr (@nemosupremo).

  • Web: Views can now define options method to implement a handler for the HTTP OPTIONS method. (Issue #304)

    Contributed by Perk Lim (@perklun).

  • Stream: Fixed acking behavior of Stream.take (Issue #266).

    When take is buffering the events should be acked after processing the buffer is complete, instead it was acking when adding into the buffer.

    Fix contributed by Amit Ripshtos (@amitripshtos).

  • Transport: Aiokafka was not limiting how many messages to read in

    a fetch request (Issue #292).

    Fix contributed by Miha Troha (@mihatroha).

  • Typing: Added type stubs for faust.web.Request.

  • Typing: Fixed type stubs for @app.agent decorator.

  • Web: Added support for Cross-Resource Origin Sharing headers (CORS).

    See new web_cors_options setting.

  • Debugging: Added OpenTracing hooks to streams/tasks/timers/Crontabs

    and rebalancing process.

    To enable you have to define a custom Tracer class that will record and publish the traces to systems such as Jeager or Zipkin.

    This class needs to have a .trace(name, **extra_context) context manager:

    from typing import Any, Dict,
    import opentracing
    from opentracing.ext.tags import SAMPLING_PRIORITY
    
    class FaustTracer:
        _tracers: Dict[str, opentracing.Tracer]
        _default_tracer: opentracing.Tracer = None
    
        def __init__(self) -> None:
            self._tracers = {}
    
        @cached_property
        def default_tracer(self) -> opentracing.Tracer:
            if self._default_tracer is None:
                self._default_tracer = self.get_tracer('APP_NAME')
    
        def trace(self, name: str,
                  sample_rate: float = None,
                  **extra_context: Any) -> opentracing.Span:
                span = self.default_tracer.start_span(
                operation_name=name,
                tags=extra_context,
            )
    
            if sample_rate is not None:
                priority = 1 if random.uniform(0, 1) < sample_rate else 0
                span.set_tag(SAMPLING_PRIORITY, priority)
            return span
    
        def get_tracer(self, service_name: str) -> opentracing.Tracer:
            tracer = self._tracers.get(service_name)
            if tracer is None:
                tracer = self._tracers[service_name] = CREATE_TRACER(service_name)
            return tracer._tracer
    

    After implementing the interface you need to set the app.tracer attribute:

    app = faust.App(...)
    app.tracer = FaustTracer()
    

    That’s it! Now traces will go through your custom tracing implementation.

  • CLI: Commands --help output now always show the default for every parameter.

  • Channels: Fixed bug in channel.send that caused a memory leak.

    This bug was not present when using app.topic().

  • Documentation: Improvements by:

  • Testing:

    • 99% total unit test coverage

    • New script to verify documentation defaults are up to date are run for every git commit.

Change history for Faust 1.4

This document contain change notes for bugfix releases in the Faust 1.4.x series. If you’re looking for changes in the latest series, please visit the latest Changes.

For even older releases you can visit the History section.

1.4.9
release-date

2019-03-14 04:00 P.M PST

release-by

Ask Solem (@ask)

  • Requirements

  • max_poll_records accidentally set to 500 by default.

    The setting has been reverted to its documented default of None. This resulted in a 20x performance improvement.

  • CLI: Now correctly returns non-zero exitcode when exception raised inside @app.command.

  • CLI: Option --no_color renamed to --no-color to be consistent with other options.

    This change is backwards compatible and --no_color will continue to work.

  • CLI: The model x command used “default*” as the field name for default value.

    $ python examples/withdrawals.py --json model Withdrawal | python -m json.tool
    [
        {
            "field": "user",
            "type": "str",
            "default*": "*"
        },
        {
            "field": "country",
            "type": "str",
            "default*": "*"
        },
        {
            "field": "amount",
            "type": "float",
            "default*": "*"
        },
        {
            "field": "date",
            "type": "datetime",
            "default*": "None"
        }
    ]
    

    This now gives “default” without the extraneous star.

  • App: Can now override the settings class used.

    This means you can now easily extend your app with custom settings:

    import faust
    
    class MySettings(faust.Settings):
        foobar: int
    
        def __init__(self, id: str, *, foobar: int = 0, **kwargs) -> None:
            super().__init__(id, **kwargs)
            self.foobar = foobar
    
    class App(faust.App):
        Settings = MySettings
    
    app = App('id', foobar=3)
    print(app.conf.foobar)
    
1.4.8
release-date

2019-03-11 05:30 P.M PDT

release-by

Ask Solem (@ask)

  • Tables: Recovery would hang when changelog have committed_offset == 0.

    Added this test to our manual testing procedure.

1.4.7
release-date

2019-03-08 02:21 P.M PDT

release-by

Ask Solem (@ask)

  • Requirements

  • Tables: Read offset not always updated after seek caused recovery to hang.

  • Consumer: Fix to make sure fetch requests will not block method queue.

  • App: Fixed deadlock in rebalancing.

  • Web: Views can now define options method to implement a handler for the HTTP OPTIONS method. (Issue #304)

    Contributed by Perk Lim (@perklun).

  • Web: Can now pass headers to HTTP responses.

1.4.6
release-date

2019-01-29 01:52 P.M PDT

release-by

Ask Solem (@ask)

  • App: Better support for custom boot strategies by having the app start without waiting for recovery when no tables started.

  • Docs: Fixed doc build after intersphinx

    URL https://click.palletsprojects.com/en/latest no longer works.

1.4.5
release-date

2019-01-18 02:15 P.M PDT

release-by

Ask Solem (@ask)

  • Fixed typo in 1.4.4 release (on_recovery_set_flags -> on_rebalance_start).

1.4.4
release-date

2019-01-18 01:10 P.M PDT

release-by

Ask Solem (@ask)

  • Requirements

  • App: App now starts even if there are no agents defined.

  • Table: Added new flags to detect if actives/standbys are ready.

    • app.tables.actives_ready

      Set to True when active tables are recovered from and are ready to use.

    • app.tables.standbys_ready

      Set to True when standbys are up to date after recovery.

1.4.3
release-date

2019-01-14 03:01 P.M PDT

release-by

Ask Solem (@ask)

  • Requirements

    • Require series 0.4.x of robinhood-aiokafka.

      • Recently version 0.5.0 was released but this has not been tested in production yet, so we have pinned Faust 1.4.x to aiokafka 0.4.x. For more information see Issue #277.

    • Test requirements now depends on pytest greater than 3.6.

      Contributed by Michael Seifert (@seifertm).

  • Documentation improvements by:

  • CI: Added CPython 3.7.2 and 3.6.8 to Travis CI build matrix.

1.4.2
release-date

2018-12-19 12:49 P.M PDT

release-by

Ask Solem (@ask)

  • Requirements

  • Agent: Allow yield in agents that use Stream.take (Issue #237).

  • App: Fixed error “future for different event loop” when web views

    send messages to Kafka at startup.

  • Table: Table views now return HTTP 503 status code during startup when table routing information not available.

  • App: New App.BootStrategy class now decides what services are started when starting the app.

  • Documentation fixes by:

1.4.1
release-date

2018-12-10 4:49 P.M PDT

release-by

Ask Solem (@ask)

  • Web: Disable aiohttp access logs for performance.

1.4.0
release-date

2018-12-07 4:29 P.M PDT

release-by

Ask Solem (@ask)

  • Requirements

  • Worker: The Kafka consumer is now running in a separate thread.

    The Kafka heartbeat background coroutine sends heartbeats every 3.0 seconds, and if those are missed rebalancing occurs.

    This patch moves the aiokafka library inside a separate thread, this way it can send responsive heartbeats and operate even when agents call blocking functions such as time.sleep(60) for every event.

  • Table: Experimental support for tables where values are sets.

    The new app.SetTable constructor creates a table where values are sets. Example uses include keeping track of users at a location: table[location].add(user_id).

    Supports all set operations: add, discard, intersection, union, symmetric_difference, difference, etc.

    Sets are kept in memory for fast operation, and this way we also avoid the overhead of constantly serializing/deserializing the data to RocksDB. Instead we periodically flush changes to RocksDB, and populate the sets from disk at worker startup/table recovery.

  • App: Adds support for Crontab tasks.

    You can now define periodic tasks using Cron-syntax:

    @app.crontab('*/1 * * * *', on_leader=True)
    async def publish_every_minute():
        print('-- We should send a message every minute --')
        print(f'Sending message at: {datetime.now()}')
        msg = Model(random=round(random(), 2))
        await tz_unaware_topic.send(value=msg).
    

    See Cron Jobs for more information.

    Contributed by Omar Rayward (@omarrayward).

  • App: Providing multiple URLs to the broker setting now works as expected.

    To facilitate this change app.conf.broker is now List[URL] instead of a single URL.

  • App: New timezone setting.

    This setting is currently used as the default timezone for Crontab tasks.

  • App: New broker_request_timeout setting.

    Contributed by Martin Maillard (@martinmaillard).

  • App: New broker_max_poll_records setting.

    Contributed by Alexander Oberegger (@aoberegg).

  • App: New consumer_max_fetch_size setting.

    Contributed by Matthew Stump (@mstump).

  • App: New producer_request_timeout setting.

    Controls when producer batch requests expire, and when we give up sending batches as producer requests fail.

    This setting has been increased to 20 minutes by default.

  • Web: aiohttp driver now uses AppRunner to start the web server.

    Contributed by Mattias Karlsson (@stevespark).

  • Agent: Fixed RPC example (Issue #155).

    Contributed by Mattias Karlsson (@stevespark).

  • Table: Added support for iterating over windowed tables.

    See Iterating over keys/values/items in a windowed table..

    This requires us to keep a second table for the key index, so support for windowed table iteration requires you to set a use_index=True setting for the table:

    windowed_table = app.Table(
        'name',
        default=int,
    ).hopping(10, 5, expires=timedelta(minutes=10), key_index=True)
    

    After enabling the key_index=True setting you may iterate over keys/items/values in the table:

    for key in windowed_table.keys():
        print(key)
    
    for key, value in windowed_table.items():
        print(key, value)
    
    for value in windowed_table.values():
        print(key, value)
    

    The items and values views can also select time-relative iteration:

    for key, value in windowed_table.items().delta(30):
        print(key, value)
    for key, value in windowed_table.items().now():
        print(key, value)
    for key, value in windowed_table.items().current():
        print(key, value)
    
  • Table: Now raises error if source topic has mismatching

    number of partitions with changelog topic. (Issue #137).

  • Table: Allow using raw serializer in tables.

    You can now control the serialization format for changelog tables, using the key_serializer and value_serializer keyword arguments to app.Table(...).

    Contributed by Matthias Wutte (@wuttem).

  • Worker: Fixed spinner output at shutdown.

  • Models: isodates option now correctly parses timezones without separator such as -0500.

  • Testing: Calling AgentTestWrapper.put now propagates exceptions raised in the agent.

  • App: Default value for stream_recovery_delay is now 3.0 seconds.

  • CLI: New command “clean_versions” used to delete old version directories (Issue #68).

  • Web: Added view decorators: takes_model and gives_model.

Change history for Faust 1.3

This document contain change notes for bugfix releases in the Faust 1.3.x series. If you’re looking for changes in the latest series, please visit the latest Changes.

For even older releases you can visit the History section.

1.3.2
release-date

2018-11-19 1:11 P.M PST

release-by

Ask Solem (@ask)

  • Requirements

  • Fixed crash in perform_seek when worker was not assigned any partitions.

  • Fixed missing await in Consumer.wait_empty.

  • Fixed hang after rebalance when not using tables.

1.3.1
release-date

2018-11-15 4:12 P.M PST

release-by

Ask Solem (@ask)

  • Tables: Fixed problem with table recovery hanging on changelog topics having only a single entry.

1.3.0
release-date

2018-11-08 4:49 P.M PST

release-by

Ask Solem (@ask)

  • Requirements

    • Now depends on Mode 2.0.3.

    • Now depends on robinhood-aiokafka 1.4.19

  • App: Refactored rebalancing and table recovery (Issue #185).

    This optimizes the rebalancing callbacks for greater stability.

    Table recovery was completely rewritten to do as little as possible during actual rebalance. This should increase stability and reduce the chance of rebalancing loops.

    We no longer attempt to cancel recovery during rebalance, so this should also fix problems with hanging during recovery.

  • App: Adds new stream_recovery_delay setting.

    In this version we are experimenting with sleeping for 10.0 seconds after rebalance, to allow for more nodes to join/leave before resuming the streams.

    This adds some startup delay, but is in general unnoticeable in production.

  • Windowing: Fixed several edge cases in windowed tables.

    Fix contributed by Omar Rayward (@omarrayward).

  • App: Skip table recovery on rebalance when no tables defined.

  • RocksDB: Iterating over table keys/items/values now skips standby partitions.

  • RocksDB: Fixed issue with having “.” in table names (Issue #184).

  • App: Allow broker URL setting without scheme.

    The default scheme for an URL like “localhost:9092” is kafka://.

  • App: Adds App.on_rebalance_complete signal.

  • App: Adds App.on_before_shutdown signal.

  • Misc: Support for Python 3.8 by importing from collections.abc.

  • Misc: Got rid of aiohttp deprecation warnings.

  • Documentation and examples: Improvements contributed by:

Change history for Faust 1.2

This document contain change notes for bugfix releases in the Faust 1.2.x series. If you’re looking for changes in the latest series, please visit the latest Changes.

For even older releases you can visit the History section.

1.2.2
  • Requirements

    • Now depends on aiocontextvars 0.1.x.

      The new 0.2 version is backwards incompatible and breaks Faust.

  • Settings: Increases default broker_session_timeout to 60.0 seconds.

  • Tables: Fixes use of windowed tables when using simplejson.

    This change makes sure simplejson serializes typing.NamedTuple as lists, and not dictionaries.

    Fix contributed by Omar Rayward (@omarrayward).

  • Tables: windowed_table[key].now() works outside of stream iteration.

    Fix contributed by Omar Rayward (@omarrayward).

  • Examples: New Kubernetes example.

    Contributed by Omar Rayward (@omarrayward).

  • Misc: Fixes DeprecationWarning for asyncio.current_task.

  • Typing: Type checks now compatible with mypy 0.641.

  • Documentation and examples fixes contributed by

1.2.1
release-date

2018-10-08 5:00 P.M PDT

release-by

Ask Solem (@ask)

  • Worker: Fixed crash introduced in 1.2.0 if no --loglevel argument present.

  • Web: The aiohttp driver now exposes app.web.web_app attribute.

    This will be the aiohttp.web_app.Application instance used.

  • Documentation: Fixed markup typo in the settings section of the User Guide (Issue #177).

    Contributed by Denis Kataev (@kataev).

1.2.0
release-date

2018-10-05 5:23 P.M PDT

release-by

Ask Solem (@ask).

Fixes
  • CLI: All commands, including user-defined, now wait for producer to

    be fully stopped before shutting down to make sure buffers are flushed (Issue #172).

  • Table: Delete event in changelog would crash app on table restore (Issue #175)

  • App: Channels and topics now take default

    key_serializer/value_serializer from key_type/value_type when they are specified as models (Issue #173).

    This ensures support for custom codecs specified using the model serializer class keyword:

    class X(faust.Record, serializer='msgpack'):
        x: int
        y: int
    
News
  • Requirements

  • CLI: Command-line improvements.

    • All subcommands are now executed by mode.Worker.

      This means all commands will have the same environment set up, including logging, signal handling, blocking detection support, and remote aiomonitor console support.

    • faust worker options moved to top level (built-in) options:

      • --logfile

      • --loglevel

      • --console-port

      • --blocking-timeout

      To be backwards compatible these options can now appear before and after the faust worker command on the command-line (but for all other commands they need to be specified before the command name):

      $ ./examples/withdrawals.py -l info worker  # OK
      
      $ ./examples/withdrawals.py worker -l info  # OK
      
      $ ./examples/withdrawals.py -l info agents  # OK
      
      $ ./examples/withdrawals.py agents -l info  # ERROR!
      
    • If you want a long running background command that will run even after returning, use: daemon=True.

      If enabled the program will not shut down until either the user hits Control-c, or the process is terminated by a signal:

      @app.command(daemon=True)
      async def foo():
          print('starting')
          # set up stuff
          return  # command will continue to run after return.
      
  • CLI: New call_command() utility for testing.

    This can be used to safely call a command by name, given an argument list.

  • Producer: New producer_partitioner setting (Issue #164)

  • Models: Attempting to instantiate abstract model now raises an error (Issue #168).

  • App: App will no longer raise if configuration accessed before being finalized.

    Instead there’s a new AlreadyConfiguredWarning emitted when a configuration key that has been read is modified.

  • Distribution: Setuptools metadata now moved to setup.py to

    keep in one location.

    This also helps the README banner icons show the correct information.

    Contributed by Bryant Biggs (@bryantbiggs)

  • Documentation and examples improvements by

Web Improvements

Note

faust.web is a small web abstraction used by Faust projects.

It is kept separate and is decoupled from stream processing so in the future we can move it to a separate package if necessary.

You can safely disable the web server component of any Faust worker by passing the --without-web option.

  • Web: Users can now disable the web server from the faust worker

    (Issue #167).

    Either by passing faust worker --without-web on the command-line, or by using the new web_enable setting.

  • Web: Blueprints can now be added to apps by using strings

    Example:

    app = faust.App('name')
    
    app.web.blueprints.add('/users/', 'proj.users.views:blueprint')
    
  • Web: Web server can now serve using Unix domain sockets.

    The --web-transport argument to faust worker, and the web_transport setting was added for this purpose.

    Serve HTTP over Unix domain socket:

    faust -A app -l info worker --web-transport=unix:///tmp/faustweb.sock
    
  • Web: Web server is now started by the App

    This makes it easier to access web-related functionality from the app. For example to get the URL for a view by name, you can now use app.web to do so after registering a blueprint:

    app.web.url_for('user:detail', user_id=3)
    
  • New web allows you to specify web framework by URL.

    Default, and only supported web driver is currently aiohttp://.

  • View: A view can now define __post_init__, just like dataclasses/Faust models can.

    This is useful for when you don’t want to deal with all the work involved in overriding __init__:

    @blueprint.route('/', name='list')
    class UserListView(web.View):
    
        def __post_init__(self):
            self.something = True
    
        async def get(self, request, response):
            if self.something:
                ...
    
  • aiohttp Driver: json() response method now uses the Faust json

    serializer for automatic support of __json__ callbacks.

  • Web: New cache decorator and cache backends

    The cache decorator can be used to cache views, supporting both in-memory and Redis for storing the cache.

    from faust import web
    
    blueprint = web.Blueprint('users')
    cache = blueprint.cache(timeout=300.0)
    
    @blueprint.route('/', name='list')
    class UserListView(web.View):
    
        @cache.view()
        async def get(self, request: web.Request) -> web.Response:
            return web.json(...)
    
    @blueprint.route('/{user_id}/', name='detail')
    class UserDetailView(web.View):
    
        @cache.view(timeout=10.0)
        async def get(self,
                      request: web.Request,
                      user_id: str) -> web.Response:
            return web.json(...)
    

    At this point the views are realized and can be used from Python code, but the cached get method handlers cannot be called yet.

    To actually use the view from a web server, we need to register the blueprint to an app:

    app = faust.App(
        'name',
        broker='kafka://',
        cache='redis://',
    )
    app.web.blueprints.add('/user/', 'where.is:user_blueprint')
    

    After this the web server will have fully-realized views with actually cached method handlers.

    The blueprint is registered with a prefix, so the URL for the UserListView is now /user/, and the URL for the UserDetailView is /user/{user_id}/.

Change history for Faust 1.1

This document contain change notes for bugfix releases in the Faust 1.1.x series. If you’re looking for changes in the latest series, please visit the latest Changes.

For even older releases you can visit the History section.

1.1.3
release-date

2018-09-21 4:23 P.M PDT

release-by

Ask Solem (@ask)

  • Producer: Producing messages is now 8x to 20x faster.

  • Stream: The stream_publish_on_commit setting

    is now disabled by default.

    Some agents produce data into topics: they forward data after processing or modify tables requiring changelog events to be sent.

    Kafka’s at-least-once delivery guarantee means we will never lose a message, and we can be certain any event sent to the source topic will be processed. It also means any source event can be processed multiple times.

    If the source event is processed many times and part of the agents processing includes forwarding that event, or producing a new kind of event, then that will also happen as many times as the source event is reprocessed.

    The stream_publish_on_commit setting attempts to minimize the chances of duplicate messages being produced, by buffering up any events sent in the agent and holding on to it until the offset of the source event is committed.

    Here’s an agent forwarding values to another topic:

    @app.agent(source_topic)
    async def forward(stream):
        async for value in stream:
            await destination_topic.send(value=value)
    

    If we execute this with stream_publish_on_commit enabled, then the send operation will be delayed until we have committed the offset for the source event.

    This works well when we commit often, but completely falls apart if the buffer grows too large and we have too much to do during commit.

    The commit operation works like this (in pseudo code) when stream_publish_on_commit is enabled:

    async def commit(self):
        committable_offsets: Dict[TopicPartition, int] = ...
        # Operation A (send buffered messages related to source offsets)
        for tp, offset in committable_offsets.items():
            send_messages_buffered_up_until_offset(tp, offset)
        # Operation B (actually tell Kafka the new offsets)
        consumer.commit(committable_offsets)
    

    This is not an atomic operation - the worker could crash between completing Operation A and Operation B. If there are 1000 messages to send, it could send 500 of them then crash without committing.

    In this case we end up with 500 duplicate messages when the source offsets are reprocessed. Is this safer than producing one and one, and committing fast? Probably not.

    That said, if you make sure the buffer never grows too large then you can take advantage of this setting to actually reduce the number of duplicate messages sent when a source topic is reprocessed.

    If you want to experiment with this, tweak the broker_commit_every and broker_commit_interval settings:

    app = faust.App('name',
                    broker_commit_every=100,
                    broker_commit_interval=1.0,
                    stream_publish_on_commit=True)
    

    The good news is that Kafka transactions are on the horizon. As soon as we have support in a Python client, we can perform this atomically, and without the overhead of buffering up messages until commit time (note from future: “exactly-once” was implemented in Faust 1.5).

1.1.2
release-date

2018-09-19 5:09 P.M PDT

release-by

Ask Solem (@ask)

  • Requirements

  • Agent: Agents having concurrency=n was executing events n times.

    An unrelated change caused these additional actors to have separate channels, when they should share the same channel.

    The only tests verifying this was using mocks, so we’ve added a new functional test in t/functional/agents to be sure it won’t happen again.

    This test also demonstrated a case of starvation when using concurrency: a single concurrency slot could starve others from doing work. To fix this a sleep(0) was added to Stream.__aiter__, this could improve performance in general for workers with many agents.

    Huge thanks to Zhy on the Faust slack channel for testing and identifying this issue.

  • Agent: Less logging noise when using concurrency.

    This removes the additionally emitted “Starting…”/”Stopping…” logs, especially noisy with @app.agent(concurrency=1000).

1.1.1
release-date

2018-09-17 4:06 P.M PDT

release-by

Ask Solem (@ask)

  • Requirements

  • Web: Blueprint registered to app with URL prefix would end up

    having double-slash.

  • Documentation: Added project layout suggestions

    to the application user guide.

  • Types: annotations now passing checks on mypy 0.630.

1.1.0
release-date

2018-09-14 1:07 P.M PDT

release-by

Ask Solem (@ask)

Important Notes
  • API: Agent/Channel.send now support keyword-only arguments only

    Users often make the mistake of doing:

    channel.send(x)
    

    and expect that to send x as the value.

    But the signature is (key, value, ...), so it ends up being channel.send(key=x, value=None).

    Fixing this will come in two parts:

    1. Faust 1.1 (this change): Make them keyword-only arguments

      This will make it an error if the names of arguments are not specified:

      channel.send(key, value)
      

      Needs to be changed to:

      channel.send(key=key, value=value)
      
    2. Faust 1.2: We will change the signature

      to channel.send(value, key=key, ...)

      At this stage all existing code will have changed to using keyword-only arguments.

  • App: The default key serializer is now raw (Issue #142).

    The default value serializer will still be json, but for keys it does not make as much sense to use json as the default: keys are very rarely expressed using complex structures.

    If you depend on the Faust 1.0 behavior you should override the default key serializer for the app:

    app = faust.App('myapp', ..., key_serializer='json')
    

    Contributed by Allison Wang (@allisonwang)

  • No longer depends on click_completion

    If you want to use the shell completion command, you now have to install that dependency locally first:

    $ ./examples/withdrawals.py completion
    Usage: withdrawals.py completion [OPTIONS]
    
    Error: Missing required dependency, but this is easy to fix.
    Run `pip install click_completion` from your virtualenv
    and try again!
    

    Installing click_completion:

    $ pip install click_completion
    [...]
    
News
  • Requirements

  • Now works with CPython 3.6.0.

  • Models: Record: Now supports decimals option to convert string decimals back to Decimal

    This can be used for any model to enable “Decimal-fields”:

    class Fundamentals(faust.Record, decimals=True):
        open: Decimal
        high: Decimal
        low: Decimal
        volume: Decimal
    

    When serialized this model will use string for decimal fields (the Javascript float type cannot be used without losing precision, it is a float after all), but when deserializing Faust will reconstruct them as Decimal objects from that string.

  • Model: Records now support custom coercion handlers.

    Coercion converts one type into another, for example from string to datettime, or int/string to Decimal.

    In models this means conversion from the serialized form back into a corresponding Python type.

    To define a model where all UUID fields are serialized to string, but then converted back to UUID objects when deserialized, do this:

    from uuid import UUID
    import faust
    
    class Account(faust.Record, coercions={UUID: UUID}):
        id: UUID
    

    What about non-json serializable types?

    The use of UUID in this example leaves one important detail out: json doesn’t support this type so how can models serialize it?

    The Faust JSON serializer adds support for UUID objects by default, but if you have a custom class you would need to add that capability by adding a __json__ handler:

    class MyType:
    
        def __init__(self, value: str):
            self.value = value
    
        def __json__(self):
            return self.value
    

    You’d get tired writing this out for every class, so why not make an abstract model subclass:

    from uuid import UUID
    import faust
    
    class UUIDAwareRecord(faust.Record,
                          abstract=True,
                          coercions={UUID: UUID}):
        ...
    
    class Account(UUIDAwareRecord):
        id: UUID
    
  • App: New ssl_context adds authentication support to Kafka.

    Contributed by Mika Eloranta (@melor).

  • Monitor: New Datadog monitor (Issue #160)

    Contributed by Allison Wang (@allisonwang).

  • App: @app.task decorator now accepts on_leader

    argument (Issue #131).

    Tasks created using the @app.task decorator will run once a worker is fully started.

    Similar to the @app.timer decorator, you can now create one-shot tasks that run on the leader worker only:

    @app.task(on_leader=True)
    async def mytask():
        print('WORKER STARTED, AND I AM THE LEADER')
    

    The decorated function may also accept the app as an argument:

    @app.task(on_leader=True)
    async def mytask(app):
        print(f'WORKER FOR APP {app} STARTED, AND I AM THE LEADER')
    
  • App: New app.producer_only attribute.

    If set the worker will start the app without consumer/tables/agents/topics.

  • App: app.http_client property is now read-write.

  • Channel: In-memory channels were not working as expected.

    • Channel.send(key=key, value=value) now works as expected.

    • app.channel() accidentally set the maxsize to 1 by default, creating a deadlock.

    • Channel.send() now disregards the stream_publish_on_commit setting.

  • Transport: aiokafka: Support timestamp-less messages

    Fixes error when data sent with old Kafka broker not supporting timestamps:

    [2018-08-27 08:00:49,262: ERROR]: [^--Consumer]: Drain messages raised:
        TypeError("unsupported operand type(s) for /: 'NoneType' and 'float'",)
    Traceback (most recent call last):
    File "faust/transport/consumer.py", line 497, in _drain_messages
        async for tp, message in ait:
    File "faust/transport/drivers/aiokafka.py", line 449, in getmany
        record.timestamp / 1000.0,
    TypeError: unsupported operand type(s) for /: 'NoneType' and 'float'
    

    Contributed by Mika Eloranta (@melor).

  • Distribution: pip install faust no longer installs the examples directory.

    Fix contributed by Michael Seifert (@seifertm)

  • Web: Adds exception handling to views.

    A view can now bail out early via raise self.NotFound() for example.

  • Web: @table_route decorator now supports taking key from the URL path.

    This is now used in the examples/word_count.py example to add an endpoint /count/{word}/ that routes to the correct worker with that count:

    @app.page('/word/{word}/count/')
    @table_route(table=word_counts, match_info='word')
    async def get_count(web, request, word):
        return web.json({
            word: word_counts[word]
        })
    
  • Web: Support reverse lookup from view name via url_for

    web.url_for(view_name, **params)
    
  • Web: Adds support for Flask-like “blueprints”

    Blueprint is basically just a description of a reusable app that you can add to your web application.

    Blueprints are commonly used in most Flask-like web frameworks, but Flask blueprints are not compatible with e.g. Sanic blueprints.

    The Faust blueprint is not directly compatible with any of them, but that should be fine.

    To define a blueprint:

    from faust import web
    
    blueprint = web.Blueprint('user')
    
    @blueprint.route('/', name='list')
    class UserListView(web.View):
    
        async def get(self, request: web.Request) -> web.Response:
            return self.json({'hello': 'world'})
    
    @blueprint.route('/{username}/', name='detail')
    class UserDetailView(web.View):
    
        async def get(self, request: web.Request) -> web.Response:
            name = request.match_info['username']
            return self.json({'hello': name})
    
        async def post(self, request: web.Request) -> web.Response:
            ...
    
        async def delete(self, request: web.Request) -> web.Response:
            ...
    

    Then to add the blueprint to a Faust app you register it:

    blueprint.register(app, url_prefix='/users/')
    

    Note

    You can also create views from functions (in this case it will only support GET):

    @blueprint.route('/', name='index')
    async def hello(self, request):
        return self.text('Hello world')
    

    Why?

    Asyncio web frameworks are moving quickly, and we want to be able to quickly experiment with different backend drivers.

    Blueprints is a tiny abstraction that fit well into the already small web abstraction that we do have.

Project
  • CI: The following Python versions have been added to the build matrix:

    • CPython 3.7.0

    • CPython 3.6.6

    • CPython 3.6.0

  • Git:

    • All the version tags have been cleaned up to follow the format v1.2.3.

    • New active maintenance branches: 1.0 and 1.1.

Change history for Faust 1.0

This document contain change notes for bugfix releases in the Faust 1.x series. If you’re looking for changes in the latest series, please visit the latest Changes.

For even older releases you can visit the History section.

1.0.30
release-date

2018-08-15 3:17 P.M PDT

release-by

Ask Solem

  • Requirements

  • Typing: faust.types.Message.timestamp_type is now the correct

    int, previously it was string by message.

  • Models: Records can now have recursive fields.

    For example a tree structure model having a field that refers back to itself:

    class Node(faust.Record):
        data: Any
        children: List['Node']
    
  • Models: A field of type List[Model] no longer raises an exception

    if the value provided is None.

  • Models: Adds support for --strict-optional-style fields.

    Previously the following would work:

    class Order(Record):
        account: Account = None
    

    The account is considered optional from a typing point of view, but only if the mypy option --strict-optional is disabled.

    Now that --strict-optional is enabled by default in mypy, this version adds support for fields such as:

    class Order(Record):
        account: Optional[Account] = None
        history: Optional[List[OrderStatus]]
    
  • Models: Class options such as isodates/include_metadata/etc. are

    now inherited from parent class.

  • Stream: Fixed NameError when pushing non-Event value into stream.

1.0.29
release-date

2018-08-10 5:00 P.M PDT

release-by

Vineet Goel

  • Requirements

    • Now depends on robinhood-aiokafka 0.4.18

      The coordination routine now ensures the program stops when receiving a aiokafka.errors.UnknownError from the Kafka broker. This leaves recovery up to the supervisor.

  • Table: Fixed hanging at startup/rebalance on Python 3.7 (Issue #134).

    Workaround for asyncio bug seemingly introduced in Python 3.7, that left the worker hanging at startup when attempting to recover a table without any data.

  • Monitor: More efficient updating of highwater metrics (Issue #139).

  • Partition Assignor: The assignor now compresses the metadata being passed around to all application instances for efficiency and to avoid extreme cases where the metadata is too big.

1.0.28
release-date

2018-08-08 11:25 P.M PDT

release-by

Vineet Goel

  • Monitor: Adds consumer stats such as last read offsets, last committed offsets and log end offsets to the monitor. Also added to the StatsdMonitor.

  • aiokafka: Changes how topics are created to make it more efficient. We now are smarter about finding kafka cluster controller instead of trial and error.

  • Documentation: Fixed links to Slack and other minor fixes.

1.0.27
release-date

2018-07-30 04:00 P.M PDT

release-by

Ask Solem

  • No code changes

  • Fixed links to documentation in README.rst

1.0.26
release-date

2018-07-30 08:00 A.M PDT

release-by

Ask Solem

  • Public release.

1.0.25
release-date

2018-07-27 12:43 P.M PDT

release-by

Ask Solem

  • stream_publish_on_commit accidentally disabled by default.

    This made the rate of producing much slower, as the default buffering settings are not optimized.

  • The App.rebalancing flag is now reset after the tables have recovered.

1.0.24
release-date

2018-07-12 6:54 P.M PDT

release-by

Ask Solem

  • Requirements

    • Now depends on robinhood-aiokafka 0.4.17

      This fixed an issue where the consumer would be left hanging without a connection to Kafka.

1.0.23
release-date

2018-07-11 5:00 P.M PDT

release-by

Ask Solem

  • Requirements

  • Now compatible with Python 3.7.

  • Setting stream_wait_empty is now disabled by default (Issue #117).

  • Documentation build now compatible with Python 3.7.

    • Fixed ForwardRef has no attribute __origin__ error.

    • Fixed DeprecatedInSphinx2.0 warnings.

  • Web: Adds app.on_webserver_init(web) callback for ability to serve static files using web.add_static.

  • Web: Adds web.add_static(prefix, fs_path)

  • Worker: New App.unassigned attribute is now set if the worker does not have any assigned partitions.

  • CLI: Console colors was disabled by default.

1.0.22
release-date

2018-06-27 5:35 P.M PDT

release-by

Vineet Goel

  • aiokafka: Timeout for topic creation now wraps entire topic creation. Earlier this timeout was for each individual request.

  • testing: Added stress testing suite.

1.0.21
release-date

2018-06-27 1:43 P.M PDT

release-by

Ask Solem

Warning

This changes the package name of kafka to rhkafka.

1.0.20
release-date

2018-06-26 2:35 P.M PDT

release-by

Vineet Goel

  • Monitor: Added Monitor.count to add arbitrary metrics to app monitor.

  • Statsd Monitor: Normalize agent metrics by removing memory address to avoid spamming statsd with thousands of unique metrics per agent.

1.0.19
release-date

2018-06-25 6:40 P.M PDT

release-by

Vineet Goel

  • Assignor: Fixed crash if initial state of assignment is invalid. This was causing the following error: ValueError('Actives and Standbys are disjoint',). during partition assignment.

1.0.18
release-date

2018-06-21 3:53 P.M PDT

release-by

Ask Solem

  • Worker: Fixed KeyError: TopicPartition(topic='...', partition=x) occurring during rebalance.

1.0.17
release-date

2018-06-21 3:15 P.M PDT

release-by

Ask Solem

  • Requirements

  • We now raise an error if the official aiokafka or kafka-python is installed.

    Faust depends on a fork of aiokafka and can not be installed with the official versions of aiokafka and kafka-python.

    If you have those in requirements, please remove them from your virtualenv and remove them from requirements.

  • Worker: Fixes hanging in wait_empty.

    This should also make rebalances faster.

  • Worker: Adds timeout on topic creation.

1.0.16
release-date

2018-06-19 3:46 P.M PDT

release-by

Ask Solem

  • Worker: aiokafka create topic request default timeout now set

    to 20 seconds (previously it was accidentally set to 1000 seconds).

  • Worker: Fixes crash from AssertionError where table._revivers

    is an empty list.

  • Distribution: Adds t/misc/scripts/rebalance/killer-always-same-node.sh.

1.0.15
release-date

2018-06-14 7:36 P.M PDT

release-by

Ask Solem

  • Requirements

  • Worker: Fixed problem where worker does not recover after MacBook sleeping and waking up.

  • Worker: Fixed crash that could lead to rebalancing loop.

  • Worker: Removed some noisy errors that weren’t really errors.

1.0.14
release-date

2018-06-13 5:58 P.M PDT

release-by

Ask Solem

  • Requirements

  • Worker: aiokafka’s heartbeat thread would sometimes keep the worker alive even though the worker was trying to shutdown.

    An error could have happened many hours ago causing the worker to crash and attempt a shutdown, but then the heartbeat thread kept the worker from terminating.

    Now the rebalance will check if the worker is stopped and then appropriately stop the heartbeat thread.

  • Worker: Fixed error that caused rebalancing to hang: "ValueError: Set of coroutines/Futures is empty.".

  • Worker: Fixed error “Coroutine x tried to break fence owned by y”

    This was added as an assertion to see if multiple threads would use the variable at the same time.

  • Worker: Removed logged error “not assigned to topics” now that we automatically recover from non-existing topics.

  • Tables: Ignore asyncio.CancelledError while stopping standbys.

  • Distribution: Added scripts to help stress test rebalancing in t/misc/scripts/rebalance.

1.0.13
release-date

2018-06-12 2:10 P.M PDT

release-by

Ask Solem

  • Worker: The Kafka fetcher service was taking too long to shutdown on rebalance.

    If this takes longer than the session timeout, it triggers another rebalance, and if it happens repeatedly this will cause the cluster to be in a state of constant rebalancing.

    Now we use future cancellation to stop the service as fast as possible.

  • Worker: Fetcher was accidentally started too early.

    This didn’t lead to any problems that we know of, but made the start a bit slower than it needs to.

  • Worker: Fixed race condition where partitions were paused while fetching from them.

  • Worker: Fixed theoretical race condition hang if web server started and stopped in quick succession.

  • Statsd: The statsd monitor prematurely initialized the event loop on module import.

    We had a fix for this, but somehow forgot to remove the “hard coded super” that was set to call: Service.__init__(self, **kwargs).

    The class is not even a subclass of Service anymore, and we are lucky it manifests merely when doing something drastic, like py.test, recursively importing all modules in a directory.

1.0.12
release-date

2018-06-06 1:34 P.M PDT

release-by

Ask Solem

  • Requirements

  • Worker: Producer crashing no longer causes the consumer to hang at shutdown while trying to publish attached messages.

1.0.11
release-date

2018-05-31 16:41 P.M PDT

release-by

Ask Solem

  • Requirements

  • Now handles missing topics automatically, so you don’t have to restart the worker the first time when topics are missing.

  • Mode now registers as a library having static type annotations.

    This conforms to PEP 561 – a new specification that defines how Python libraries register type stubs to make them available for use with static analyzers like mypy and pyre-check.

  • Typing: Faust codebase now passes --strict-optional.

  • Settings: Added new settings

  • Aiokafka: Removes need for consumer partitions lock: this fixes

    rare deadlock.

  • Worker: Worker no longer hangs for few minutes when there is an error.

1.0.10
release-date

2018-05-15 16:02 P.M PDT

release-by

Vineet Goel

  • Worker: Stop reading changelog when no remaining messages.

1.0.9
release-date

2018-05-15 15:42 P.M PDT

release-by

Vineet Goel

  • Worker: Do not stop reading standby updates.

1.0.8
release-date

2018-05-15 11:00 A.M PDT

release-by

Vineet Goel

  • Tables

    • Fixes bug due to which we were serializing None values while recording a key delete to the changelog. This was causing the deleted keys to never be deleted from the changelog.

    • We were earlier not persisting offsets of messages read during changelog reading (or standby recovery). This would cause longer recovery times if recovery was ever interrupted.

  • App: Added flight recorder for consumer group rebalances for debugging.

1.0.7
release-date

2018-05-14 4:53 P.M PDT

release-by

Ask Solem

  • Requirements

  • App: key_type and value_type can now be set to:

    • int: key/value is number stored as string

    • float: key/value is floating point number stored as string.

    • decimal.Decimal key/value is decimal stored as string.

  • Agent: Fixed support for group_by/through after change to reuse the same stream after agent crashing.

  • Agent: Fixed isolated_partitions=True after change in v1.0.3.

    Initialization of the agent-by-topic index was in 1.0.3 moved to the AgentManager.start method, but it turns out AgentManager is a regular class, and not a service.

    AgentManager is now a service responsible for starting/stopping the agents required by the app.

  • Agent: Include active partitions in repr when isolated_partitions=True.

  • Agent: Removed extraneous ‘agent crashed’ exception in logs.

  • CLI: Fixed autodiscovery of commands when using faust -A app.

  • Consumer: Appropriately handle closed fetcher.

  • New shortcut: faust.uuid() generates UUID4 ids as string.

1.0.6
release-date

2018-05-11 11:15 A.M PDT

release-by

Vineet Goel

  • Requirements:

    • Now depends on Aiokafka 0.4.7.

  • Table: Delete keys when raw value in changelog set to None

    This was resulting in deleted keys still being present with value None upon recovery.

  • Transports: Crash app on CommitFailedError thrown by aiokafka.

    App would get into a weird state upon a commit failed error thrown by the consumer thread in the aiokafka driver.

1.0.5
release-date

2018-05-08 4:09 P.M PDT

release-by

Ask Solem

  • Requirements:

  • Agents: Fixed problem with hanging after agent raises exception.

    If an agent raises an exception we cannot handle it within the stream iteration, so we need to restart the agent.

    Starting from this change, even though we restart the agent, we reuse the same faust.Stream object that the crashed agent was using.

    This makes recovery more seamless and there are fewer steps involved.

  • Transports: Fixed worker hanging issue introduced in 1.0.4.

    In version 1.0.4 we introduced a bug in the round-robin scheduling of topic partitions that manifested itself by hanging with 100% CPU usage.

    After processing all records in all topic partitions, the worker would spin loop.

  • API: Added new base class for windows: faust.Window

    There was the typing interface faust.types.windows.WindowT, but now there is also a concrete base class that can be used in for example Mock(autospec=Window).

  • Tests: Now takes advantage of the new AsyncMock.

1.0.4
release-date

2018-05-08 11:45 A.M PDT

release-by

Vineet Goel

  • Transports:

    In version-1.0.2 we implemented fair scheduling in aiokafka transport such that while processing the worker had an equal chance of processing each assigned Topic. Now we also round-robin through topic partitions within topics such that the worker has an equal chance of processing message from each assigned partition within a topic as well.

1.0.3
release-date

2018-05-07 3:45 P.M PDT

release-by

Ask Solem

  • Tests:

    • Adds 5650 lines of tests, increasing test coverage to 90%.

  • Requirements:

  • Development:

    • CI now builds coverage.

    • CI now tests multiple CPython versions:

      • CPython 3.6.0

      • CPython 3.6.1

      • CPython 3.6.2

      • CPython 3.6.3

      • CPython 3.6.4

      • CPython 3.6.5

  • Backward incompatible changes:

    • Removed faust.Set unused by any internal applications.

  • Fixes:

    • app.agents did not forward app to AgentManager.

      The agent manager does not use the app, but fixing this in anticipation of people writing custom agent managers.

    • AgentManager: On partitions revoked

      the agent manager now makes sure there’s only one call to each agents agent.on_partitions_revoked callback.

      This is more of a pedantic change, but could have caused problems for advanced topic configurations.

1.0.2
release-date

2018-05-03 3:32 P.M PDT

release-by

Ask Solem

  • Transports: Implements fair scheduling in aiokafka transport.

    We now round-robin through topics when processing fetched records from Kafka. This helps us avoid starvation when some topics have many more records than others, and also takes into account that different topics may have wildly varying partition counts.

    In this version when a worker is subscribed to partitions:

    [
        TP(topic='foo', partition=0),
        TP(topic='foo', partition=1),
        TP(topic='foo', partition=2),
        TP(topic='foo', partition=3),
    
        TP(topic='bar', partition=0),
        TP(topic='bar', partition=1),
        TP(topic='bar', partition=2),
        TP(topic='bar', partition=3),
    
        TP(topic='baz', partition=0)
    ]
    

    Note

    TP is short for topic and partition.

    When processing messages in these partitions, the worker will round robin between the topics in such a way that each topic will have an equal chance of being processed.

  • Transports: Fixed crash in aiokafka transport.

    The worker would attempt to commit an empty set of partitions, causing an exception to be raised. This has now been fixed.

  • Stream: Removed unused method Stream.tee.

    This method was an example implementation and not used by any of our internal apps.

  • Stream: Fixed bug when something raises StopAsyncIteration

    while processing the stream.

    The Python async iterator protocol mandates that it’s illegal to raise StopAsyncIteration in an __aiter__ method.

    Before this change, code such as this:

    async for value in stream:
        value = anext(other_async_iterator)
    

    where anext raises StopAsyncIteration, Python would have the outer __aiter__ reraise that exception as:

    RuntimeError('__aiter__ raised StopAsyncIteration')
    

    This no longer happens as we catch the StopAsyncIteration exception early to ensure it does not propagate.

1.0.1
release-date

2018-05-01 9:52 A.M PDT

release-by

Ask Solem

  • Stream: Fixed issue with using break when iterating over stream.

    The last message in a stream would not be acked if the break keyword was used:

    async for value in stream:
        if value == 3:
            break
    
  • Stream: .take now acks events after buffer processed.

    Previously the events were erroneously acked at the time of entering the buffer.

    Note

    To accomplish this we maintain a list of events to ack as soon as the buffer is processed. The operation is O(n) where n is the size of the buffer, so please keep buffer sizes small (e.g. 1000).

    A large buffer will increase the chance of consistency issues where events are processed more than once.

  • Stream: New noack modifier disables acking of messages in the stream.

    Use this to disable automatic acknowledgment of events:

    async for value in stream.noack():
        # manual acknowledgment
        await stream.ack(stream.current_event)
    

    Manual Acknowledgment

    The stream is a sequence of events, where each event has a sequence number: the “offset”.

    To mark an event as processed, so that we do not process it again, the Kafka broker will keep track of the last committed offset for any topic.

    This means “acknowledgment” works quite differently from other message brokers, such as RabbitMQ where you can selectively ack some messages, but not others.

    If the messages in the topic look like this sequence:

    1 2 3 4 5 6 7 8
    

    You can commit the offset for #5, only after processing all events before it. This means you MUST ack offsets (1, 2, 3, 4) before being allowed to commit 5 as the new offset.

  • Stream: Fixed issue with .take not properly respecting the within argument.

    The new implementation of take now starts a background thread to fill the buffer. This avoids having to restart iterating over the stream, which caused issues.

1.0.0
release-date

2018-04-27 4:13 P.M PDT

release-by

Ask Solem

  • Models: Raise error if Record.asdict() is overridden.

  • Models: Can now override Record._prepare_dict to change the payload generated.

    For example if you want your model to serialize to a dictionary, but not have any fields with None values, you can override _prepare_dict to accomplish this:

    class Quote(faust.Record):
        ask_price: float = None
        bid_price: float = None
    
        def _prepare_dict(self, data):
            # Remove keys with None values from payload.
            return {k: v for k, v in data.items() if v is not None}
    
    assert Quote(1.0, None).asdict() == {'ask_price': 1.0}
    
  • Stream: Removed annoying Flight Recorder logging that was too noisy.

Change history for Faust 0.9

This document contain historical change notes for bugfix releases in the Faust 0.x series. To see the most recent changelog please visit Changes.

0.9.65
release-date

2018-04-27 2:04 P.M PDT

release-by

Vineet Goel

0.9.64
release-date

2018-04-26 4:48 P.M PDT

release-by

Ask Solem

  • Models: Optimization for FieldDescriptor.__get__.

  • Serialization: Optimization for faust.utils.json.

0.9.63
release-date

2018-04-26 04:32 P.M PDT

release-by

Vineet Goel

  • Requirements:

    • Now depends on aiokafka 0.4.5 (Robinhood fork).

  • Models: Record.asdict() and to_representation() were slow on complicated models, so we are now using code generation to optimize them.

    Warning

    You are no longer allowed to override Record.asdict().

0.9.62
release-date

2018-04-26 12:06 P.M PDT

release-by

Ask Solem

  • Requirements:

  • Consumer: Fixed asyncio.base_futures.IllegalStateError error in commit handler.

  • CLI: Fixed bug when invoking worker using faust -A.

Authors

Creators

Name

Email

Ask Solem

<ask@robinhood.com>

Vineet Goel

<vineet@robinhood.com>

Note

You must not solicit for free support from email addresses on this list. Ask the community for help in the Slack channel, or ask a question on Stack Overflow.

Committers

Arpan Shah

<arpan@robinhood.com>

Sanyam Satia

<sanyam@robinhood.com>

Contributors become committers by stepping up to the task. They can 1) triage issues, help others on the issue tracker, code reviews, Slack or mailing lists, or 2) make modifications to documentation and code. The award for doing this in any significant capacity for one year or longer, is to be added to the list of maintainers above.

Contributors

Allison Wang

<allison.wang@robinhood.com>

Jamshed Vesuna

<jamshed@robinhood.com>

Jaren Glover

<jaren@robinhood.com>

Jerry Li

<jerry.li@robinhood.com>

Prithvi Narasimhan

<narasimhan.prithvi@gmail.com>

Ruby Wang

<ruby.wang@robinhood.com>

Shrey Kumar Shahi

<shrey@robinhood.com>

Mika Eloranta

<mel@aiven.io>

Omar Rayward

<orayward@yahoo.com>

Alexander Oberegger

<alexander.oberegger@smaxtec.com>

Matthew Stump

<mstump@vorstella.com>

Martin Maillard

<self@martin-maillard.com>

Mattias Karlsson

<mattias@hemmabolan.se>

Matthias Wutte

<matthias.wutte@smaxtec.com>

Thibault Serot

<thibserot@gmail.com>

Ryan Whitten

<ryan@pixability.com>

Nimi Wariboko Jr

<nimiwaribokoj@gmail.com>

Chris Seto

<chriskseto@gmail.com>

Amit Ripshtos

<amit.r@qspark.prod>

Miha Troha

<miha.troha@comcom.si>

Perk Lim

<perk@robinhood.com>

Julien Surloppe

<julien@surloppe.fr>

Bob Haddleton

<bob.haddleton@nokia.com>

Nimish Telang

<nimish@telang.net>

Cesar Pantoja

<cesarpantoj@gmail.com>

Tomasz Nguyen

<me@swistofon.pl>

Victor Miroshnikov

<me@vmiroshnikov.com>

Glossary

acked
acking
acknowledged

Acknowledgment marks a message as fully processed. It’s a signal that the program does not want to see the message again. Faust advances the offset by committing after a message is acknowledged.

agent

An async function that iterates over a stream. Since streams are infinite the agent will usually not end unless the program is shut down.

codec

A codec encodes/decodes data to some format or encoding. Examples of codecs include Base64 encoding, JSON serialization, pickle serialization, text encoding conversion, and more.

concurrent
concurrency

A concurrent process can deal with many things at once, but not necessarily execute them in parallel. For example a web crawler may have to fetch thousands of web pages, and can work on them concurrently.

This is distinct from parallelism in that the process will switch between fetching web pages, but not actually process any of them at the same time.

consumer

A process that receives messages from a broker, or a process that is actively reading from a topic/channel.

event

A happening in a system, or in the case of a stream, a single record having a key/value pair, and a reference to the original message object.

idempotence
idempotent
idempotency

Idempotence is a mathematical property that describes a function that can be called multiple times without changing the result. Practically it means that a function can be repeated many times without unintended effects, but not necessarily side-effect free in the pure sense (compare to nullipotent).

Further reading: https://en.wikipedia.org/wiki/Idempotent

message

The unit of data published or received from the message transport. A message has a key and a value.

nullipotent
nullipotence
nullipotency

describes a function that’ll have the same effect, and give the same result, even if called zero or multiple times (side-effect free). A stronger version of idempotent.

parallel
parallelism

A parallel process can execute many things at the same time, which will usually require running on multiple CPU cores.

In contrast the term concurrency refers to something that is seemingly parallel, but does not actually execute at the same time.

publisher

A process sending messages, or a process publishing data to a topic.

reentrant
reentrancy

describes a function that can be interrupted in the middle of execution (e.g., by hardware interrupt or signal), and then safely called again later. Reentrancy isn’t the same as idempotence as the return value doesn’t have to be the same given the same inputs, and a reentrant function may have side effects as long as it can be interrupted; An idempotent function is always reentrant, but the reverse may not be true.

sensor

A sensor records information about events happening in a running Faust application.

serializer

A serializer is a codec, responsible for serializing keys and values in messages sent over the network.

task

A task is the unit of concurrency in an asyncio program.

thread safe

A function or process that is thread safe means multiple POSIX threads can execute it in parallel without race conditions or deadlock situations.

topic

Consumers subscribe to topics of interest, and producers send messages to consumers via the topic.

transport

A communication mechanism used to send and receive messages, for example Kafka.

Indices and tables